Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal
Key Words — Instrument calibration, delta ferrite, stainless steel weld metal, austenitic stainless weld metal, duplex stainless weld metal

An American National Standard

Approved by the
American National Standards Institute
July 10, 2006

Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal

Supersedes ANSI/AWS A4.2M/A4.2:1997

Prepared by the
American Welding Society (AWS) A5 Committee on Filler Metals and Allied Materials

Under the Direction of the
AWS Technical Activities Committee

Approved by the
AWS Board of Directors

Abstract

Calibration procedures are specified for a number of commercial instruments that can then provide reproducible measurements of the ferrite content of austenitic stainless steel weld metals. Certain of these instruments can be further calibrated for measurements of the ferrite content of duplex ferritic-austenitic stainless steel weld metals. Calibration with primary standards (nonmagnetic coating thickness standards from the U.S. National Institute of Standards and Technology) is the preferred method for appropriate instruments. Alternatively, these and other instruments can be calibrated with weld-metal-like secondary standards.

Reproducibility of measurement after calibration is specified. Problems associated with accurate determination of ferrite content are described.
Table of Contents

Personnel .. v
Foreword .. vii
List of Tables .. vii
List of Figures .. x

1. **Scope** ... 1

2. **Normative reference** .. 1

3. **Principle** .. 1

4. **Calibration** .. 2
 4.1 Coating thickness standards ... 2
 4.2 Magnet .. 2
 4.3 Instruments .. 2
 4.4 Calibration curve ... 2
 4.5 Calibration of other instruments with primary standards .. 3

5. **Standard method for shielded metal arc covered electrode test pads** ... 4
 5.1 Dimensions of weld metal test specimens .. 4
 5.2 Depositing weld metal test specimens .. 4
 5.3 Measuring .. 6

6. **Standard methods for test pads of other processes and for production welds** ... 6
 6.1 Standard method for test pads for other weld metals .. 6
 6.2 Production welds .. 6

7. **Other Methods** .. 7
 7.1 Methods .. 7
 7.2 Results ... 7
 7.3 Maintaining calibration .. 7

8. **Procedures used to prepare secondary standards for delta ferrite in austenitic stainless steel weld metal** ... 8

Annex A (informative)—Manufacture of secondary standards by strip cladding .. 9
Annex B (informative)—Manufacture of secondary standards by centrifugal chill casting ... 19
Bibliography ... 27

National Annexes ... 29
Annex C (Normative)—Calibration of Legacy Instruments with Primary Standards ... 29
Annex D (Informative)—Instruments .. 33
Annex E (Informative)—Guidelines for the Preparation of Technical Inquiries .. 39
Annex F (Informative)—List of Deviations from ISO 8249:2000 .. 41

AWS Filler Metal Specifications by Material and Welding Process ... 43
AWS Filler Metal Specifications and Related Documents ... 45
List of Tables

Table	Page No.
1 | Relationship between Ferrite Number and thickness of non-magnetic coating of coating thickness standards (specified in 4.1) for calibration of instruments for measurement of ferrite content through attractive force (specified in 4.3) using the standard magnet (specified in 4.2) 3
2 | Welding parameters and deposit dimensions ... 4
3 | Maximum allowable deviation in the periodic FN check ... 6
A.1 | Welding parameters .. 9
A.2 | Example of the chemical composition of seventh layer of strip clad deposits 13
A.3 | NBS standards employed for “Magne-Gage” calibration for strip cladding secondary standards ... 14
A.4 | Example of the tabular presentation of results on the card accompanying each box of standards (Secondary weld metal standards, Set 68—May 1980) ... 15
B.1 | NIST standard used for “Magne-Gage” calibration for centrifugally cast secondary standard samples 24
B.2 | Tolerance on the position of calibration points using primary standards .. 24
B.3 | Examples of the tabular presentation of results of the card accompanying each box of centrifugally cast standards .. 26
C.1 | Ferrite Numbers (FN) for Primary Standards for Feritscope Model FE8-KF Calibration 30
C.2 | Maximum Allowable Deviation of the Periodic Ferrite Number (FN) Check for Feritscopes/ Ferritescopes ... 30
C.3 | Ferrite Numbers (FN) for Primary Standards for Inspector Gage Calibration 31
C.4 | Maximum Allowable Deviation of the Periodic Ferrite Number (FN) Check for Inspector Gages 31

List of Figures

Figure	Page No.
1 | Relationship between the tear-off forces of the standard magnet defined in 4.2 and the coating thickness standards defined in 4.1 .. 2
2 | Weld metal specimen for ferrite determination .. 4
A.1 | Method of depositing weld metal for secondary standard by strip cladding 10
A.2 | Bead deposition and machining sequences for secondary standards by strip cladding 12
A.3 | Cutting sequences for secondary standard by strip cladding .. 12
A.4 | Extraction of individual strip cladding secondary standards .. 12
A.5 | Marking of each strip cladding ferrite secondary standard ... 13
A.6 | Marking on each strip cladding secondary standard sample and identification of the five measuring points .. 14
B.1 | Centrifugally chill cast ring for secondary standards ... 20
B.2 | Dimensions and FN measurement positions on six faces of blocks machined from centrifugally chill cast rings .. 21
B.3 | IIW Commission II, 6th round robin measurement results—Overall results 22
B.4 | IIW Commission II, 6th round robin measurement results—Face centre results 23
D.1 | Magne-Gage-Type Instruments .. 34
D.2 | Feritscope Model FE8-KF .. 35
D.3 | Inspector Gage .. 36
D.4 | Ferrite Indicator (Severn Gage) .. 37
D.5 | Foerster Ferrite Content Meter ... 37
Welding — Determination of Ferrite Number (FN) in austenitic and duplex ferritic-austenitic Cr-Ni stainless steel weld metals

1 Scope
This standard specifies the method and apparatus for
— the measurement of the delta ferrite content, expressed as Ferrite Number (FN), in largely austenitic and duplex ferritic-austenitic stainless steel\(^1\) weld metal through the attractive force between a weld metal sample and a standard permanent magnet;
— the preparation and measurement of standard pads for shielded metal arc covered electrodes. The general method is also recommended for the ferrite measurement of production welds and for weld metal from other processes, such as gas tungsten arc welding, gas shielded metal arc welding and submerged arc welding (in these cases, the way of producing the pad should be defined);
— the calibration of other instruments to measure FN.

The method described in this standard is intended for use on weld metals in the as-welded state and on weld metals after thermal treatments causing complete or partial transformation of ferrite to any non-magnetic phase. Austenitizing thermal treatments which alter the size and shape of the ferrite will change the magnetic response of the ferrite.

The method is not intended for measurement of the ferrite content of cast, forged or wrought austenitic or duplex ferritic-austenitic steel samples.

2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of this standard. For dated references, subsequent amendments to, or revisions of, this publication do not apply. However, parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

3 Principle
The measurement of the ferrite content of largely austenitic stainless steel weld metal through the attractive force between a weld metal sample and a permanent magnet is based upon the fact that the attractive force between a two-phase (or multiphase) sample containing one ferromagnetic phase and one (or more) non-ferromagnetic phase(s) increases as the content of the ferromagnetic phase increases. In largely austenitic and duplex ferritic-austenitic stainless steel weld metal, ferrite is magnetic, whereas austenite, carbides, sigma phase and inclusions are non-ferromagnetic.

\(^1\) The term “austenitic-ferritic (duplex) stainless steel” is sometimes applied in place of “duplex ferritic-austenitic stainless steel”.