Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal
Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal

6th Edition

Prepared by the American Welding Society (AWS) A5 Committee on Filler Metals and Allied Materials

Under the Direction of the AWS Technical Activities Committee

Approved by the AWS Board of Directors

Abstract

Calibration procedures are specified for a number of commercial instruments that can then provide reproducible measurements of the ferrite content of austenitic stainless steel weld metals. Certain of these instruments can be further calibrated for measurements of the ferrite content of duplex ferritic-austenitic stainless steel weld metals. Calibration with primary standards (non-magnetic coating thickness standards from the U.S. National Institute of Standards and Technology) is the preferred method for appropriate instruments. Alternatively, these and other instruments can be calibrated with weld-metal-like secondary standards.

Reproducibility of measurement after calibration is specified. Problems associated with accurate determination of ferrite content are described.
Photocopy Rights. No portion of this standard may be reproduced, stored in a retrieval system, or transmitted in any form, including mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

Authorization to photocopy items for internal, personal, or educational classroom use only or the internal, personal, or educational classroom use only of specific clients is granted by the American Welding Society provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, tel: (978) 750-8400; Internet: <www.copyright.com>.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex E). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Foreword

This foreword is not part of this standard but is included for informational purposes only.

This document is an adoption of ISO 8249:2018 with additional normative and informative annexes to replace AWS A4.2M, Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal, first published in 1974 and revised in 1986 and again in 1991. These revisions were prepared by the Subcommittee on Welding Stainless Steel of the Welding Research Council and by the AWS Committee on Filler Metals. Then it was revised again in 1997 and in 2006 by AWS A5 Committee on Filler Metals and Allied Materials. The current revision is the third to use the SI system of measurement as the primary system, and updates the standard in the light of new information.

A certain minimum ferrite content in most austenitic stainless steel weld metals is useful in assuring freedom from microfissures and hot cracks. Upper limits on ferrite content in austenitic stainless steel weld metals can be imposed to limit corrosion in certain media or to limit embrittlement due to transformation of ferrite to sigma phase during heat treatment or elevated temperature service. Upper limits on ferrite content in duplex ferritic-austenitic stainless steel weld metals can be imposed to help assure ductility, toughness, and corrosion resistance in the as-welded condition.

Reproducible quantitative ferrite measurements in stainless steel weld metals are therefore of interest to filler metal producers, fabricators of weldments, weldment end users, regulatory authorities, and insurance companies.

At present, there is no universal opinion concerning the best experimental method that gives an absolute measurement of the amount of ferrite in a weld metal, either destructively or nondestructively. This situation has led to the development and use, internationally, of the concept of a “Ferrite Number” or FN. A Ferrite Number is a description of the ferrite content of a weld metal determined using a standardized procedure. Such procedures are described in this Standard. The Ferrite Number of a weld metal has been considered approximately equivalent to the percentage ferrite content, particularly at low FN values. More recent information suggests that the FN may overstate the volume percent ferrite at higher FN by a factor in the order of 1.3 to 1.5, which depends to a certain extent upon the actual composition of the alloy in question.

Although other methods are available for determining the Ferrite Number, the standardized measuring procedure, described in this Standard, is based on assessing the tear-off force needed to pull the weld metal sample from a magnet of defined strength and size. The relationship between tear-off force and FN is obtained using primary standards consisting of a non-magnetic coating of specified thickness on a magnetic base. Each non-magnetic coating thickness is assigned an FN value.

The ferrite content determined by this method is arbitrary and is not necessarily the true or absolute ferrite content. In recognition of this fact, the term “Ferrite Number” (FN) shall be used instead of “ferrite percent” when quoting a ferrite content determined by this method. To help convey the message that this standardized calibration procedure has been used, the terms “Ferrite Number” and “FN” are capitalized as proper nouns.

Document Development

AWS A4.2-74 Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic Stainless Steel Weld Metal

ANSI/AWS A4.2-86 Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic Stainless Steel Weld Metal

ANSI/AWS A4.2-91 Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Austenitic-Ferritic Stainless Steel Weld Metal
Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal

NOTE: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights.

By publication of this standard, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer.

Please note that ISO uses commas (,) and AWS uses periods (.) for decimals. The ISO decimal commas have been replaced by periods in this document for consistency.

Substantive change is correcting FN number in Table 1 for coating thickness 0.052 mm which is shown in *Italic* font.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS A5 Committee on Filler Metals and Allied Materials, American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Table of Contents

Personnel .. v
Foreword .. vii
List of Tables ... x
List of Figures .. x

1. **Scope** ... 1

2. **Normative References** .. 2

3. **Principle** .. 2

4. **Calibration** ... 2
 4.1 Coating Thickness Standards ... 2
 4.2 Magnet ... 2
 4.3 Instruments ... 3
 4.4 Calibration Curve ... 3

5. **Standard Method for Covered Electrode Test Pads** .. 5
 5.1 Dimensions of Weld Metal Test Specimen .. 5
 5.2 Depositing Weld Metal Test Specimen ... 5
 5.3 Measuring ... 6

6. **Standard Methods for Test Pads of Other Processes and for Production Welds** ... 7
 6.1 Standard Method for Test Pads for Other Weld Metals .. 7
 6.2 Production Welds .. 7

7. **Other Methods** .. 7
 7.1 Methods .. 7
 7.2 Results ... 7
 7.3 Maintaining Calibration ... 7

8. **Procedures Used to Prepare Secondary Standards for Delta Ferrite in Austenitic Stainless Steel Weld Metal** 8

Annexes:
Annex A (Informative)—Manufacture of Secondary Standards by Strip Cladding ... 9
Annex B (Informative)—Manufacture of Secondary Standards by Centrifugal Chill Casting ... 17

National Annexes:
Annex C (Normative)—Calibration of Legacy Instruments with Primary Standards ... 25
Annex D (Informative)—Instruments ... 29
Annex E (Informative)—Requesting an Official Interpretation on an AWS Standard ... 35
Annex F (Informative)—List of Deviations from ISO 8249:2018 .. 37
Bibliography ... 37

AWS Filler Metal Specifications by Material and Welding Process .. 39
AWS Filler Metal Specifications and Related Documents ... 41
List of Tables

Table	Page No.
1 | Relationship Between Ferrite Number and Thickness of Non-Magnetic Coating of Coating Thickness Standards (specified in 4.1) for Calibration of Instruments for Measurement of Ferrite Content Through Attractive Force (specified in 4.3) Using the Standard Magnet (specified in 4.2) | 4
2 | Welding Parameters and Deposit Dimensions | 6
3 | Maximum Allowable Deviation in the Periodic FN Check | 8
A.1 | Example of the Chemical Composition of Seventh Layer of Strip Clad Deposits | 13
A.2 | NIST (NBS) Standards Employed for Magne-Gage Calibration for Strip Cladding Secondary Standards | 15
A.3 | Example of the Tabular Presentation of Results on the Card Accompanying Each Box of Standards | 16
A.4 | NIST Standard Used for Magne-Gage Calibration for Centrifugally Cast Secondary Standard Samples | 21
B.1 | Tolerance on the Position of Calibration Points Using Primary Standards | 21
B.2 | Example of the Tabular Presentation of Results of the Card Accompanying Each Box of Centrifugally Cast Standards | 23
C.1 | Ferrite Numbers (FN) for Primary Standards for Feritscope Model FE8-KF Calibration | 26
C.2 | Maximum Allowable Deviation of the Periodic Ferrite Number (FN) Check for Feritscopes/Ferritescopes | 27
C.3 | Ferrite Numbers (FN) for Primary Standards for Inspector Gage Calibration | 27
C.4 | Maximum Allowable Deviation of the Periodic Ferrite Number (FN) Check for Inspector Gages | 28

List of Figures

Figure	Page No.
1 | Relationship Between the Tear-Off Forces of the Standard Magnet Defined in 4.2 and the Coating Thickness Standards Defined in 4.1 | 3
2 | Weld Metal Specimen for Ferrite Determination | 5
A.1 | Method of Depositing Weld Metal for Secondary Standard by Strip Cladding | 10
A.2 | Bead Deposition and Machining Sequences for Secondary Standards by Strip Cladding | 11
A.3 | Cutting Sequences for Secondary Standard by Strip Cladding | 12
A.4 | Extraction of Individual Strip Cladding Secondary Standards | 12
A.5 | Marking of Each Strip Cladding Ferrite Secondary Standard | 13
A.6 | Marking on Each Strip Cladding Secondary Standard Sample and Identification of the Five Measuring Points | 14
B.1 | Centrifugally Chill Cast Ring for Secondary Standards | 18
B.2 | Dimensions and FN Measurement Positions on Six Faces of Blocks Machined from Centrifugally Chill Cast Rings | 18
B.3 | IIW Commission II, 6th Round Robin Measurement Results—Overall Results | 19
B.4 | IIW Commission II, 6th Round Robin Measurement Results—Face Center Results | 20
D.1 | Magne-Gage-Type Instruments | 30
D.2 | Ferritescopes Model FE8-KF | 31
D.3 | Inspector Gage | 32
D.4 | Ferrite Indicator (Severn Gage) | 33
D.5 | Foerster Ferrite Content Meter | 34
Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal

1. Scope

1.1 This standard specifies the method and apparatus for

- the measurement of the delta ferrite content, expressed as Ferrite Number (FN), in largely austenitic and duplex ferritic-austenitic stainless steel\(^1\) weld metal through the attractive force between a weld metal sample and a standard permanent magnet;

- the preparation and measurement of standard pads for shielded metal arc covered electrodes. The general method is also recommended for the ferrite measurement of production welds and for weld metal from other processes, such as gas tungsten arc welding, gas metal arc welding, and submerged arc welding (in these cases, the way of producing the pad should be defined);

- the calibration of other instruments to measure FN.

The method described in this standard is intended for use on weld metals in the as-welded state and on weld metals after thermal treatments causing complete or partial transformation of ferrite to any non-magnetic phase. Austenitizing thermal treatments which alter the size and shape of the ferrite will change the magnetic response of the ferrite.

The method is not intended for measurement of the ferrite content of cast, forged or wrought austenitic or duplex ferritic-austenitic steel samples.

1.2 Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed herein. Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, *Safety in Welding, Cutting, and Allied Processes*

(2) AWS Safety and Health Fact Sheets

(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Safety Data Sheets supplied by materials manufacturers

(2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

\[^1\] The term “austenitic-ferritic (duplex) stainless steel” is sometimes applied in place of “duplex ferritic-austenitic stainless steel”.