Abstract

This specification prescribes requirements for the classification of bare, wrought, and cast aluminum-alloy electrodes and rods for use with the gas metal arc, gas tungsten arc, oxyfuel gas, and plasma arc welding processes.

This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee's response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
This page is intentionally blank.
Personnel

AWS A5 Committee on Filler Metals and Allied Materials

H. D. Wehr, Chair Arcos Industries, LLC
R. D. Fuchs, 2nd Vice Chair Böhler Welding Group USA, Incorporated
R. K. Gupta, Secretary American Welding Society
T. Anderson ITW Welding North America
J. C. Bundy Hobart Brothers Company
J. L. Caron Haynes International, Incorporated
G. L. Chouinard Stoody Company
D. D. Crockett Consultant
R. V. Decker Weldstar
D. M. Fedor The Lincoln Electric Company
J. G. Feldstein Foster Wheeler North America
D. A. Fink The Lincoln Electric Company
G. L. Franke Consultant
R. M. Henson Harris Products Group
S. D. Kiser Consultant
P. J. Konkol Concurrent Technologies Corporation
D. J. Kotecki Damian Kotecki Welding Consultants
L. G. Kvidahl Ingalls Shipbuilding
A. Y. Lau Canadian Welding Bureau
J. S. Lee Chevron
J. R. Logan BWX Technologies, Incorporated
T. Melfi The Lincoln Electric Company
M. T. Merlo Consultant
K. M. Merlo-Joseph Apeks Supercritical
B. Mosier Polymet Corporation
T. C. Myers Wectec
B. A. Pletcher Bechtel
J. D. Praster Consultant
K. C. Pruden BP Americas
K. Roossinck Ingalls Shipbuilding
P. K. Salvesen Det Norske Veritas (DNV)
K. Sampath Chart Industries
J. D. Schaefer Tri Tool, Incorporated
F. A. Schweighardt Air Liquide Industrial US LP
W. S. Severance Consultant
M. F. Sinfield Naval Surface Warfare Center
D. Singh GE Oil & Gas
P. E. Staunton Shell EDG
R. C. Sutherlin Consultant
R. A. Swain Euroweld, Limited
J. Zhang Indalco Alloys Incorporated of Lincoln Electric
Advisors to the AWS A5 Committee on Filler Metals and Allied Materials

D. R. Bajek Chicago Bridge and Iron
J. E. Beckham FCA Fiat Chrysler Automobiles
J. M. Blackburn Naval Sea Systems Command
K. P. Campion Carpenter Technology
D. A. DelSignore Consultant
J. DeVito Consultant
W. D. England ITW Welding North America
S. E. Ferree Consultant
R. J. Fox Hobart Brothers Company
S. Imaoka Kobe Steel Limited
S. J. Knostman Hobart Brothers Company
W. A. Marttila WAMcom Consulting LLC
R. Menon Victor Technologies
R. A. Miller Kennametal Inc
A. K. Mukherjee Siemens Energy, Incorporated
M. A. Quintana The Lincoln Electric Company
M. J. Sullivan NASSCO—National Steel & Shipbuilding
M. D. Tumuluru US Steel
H. J. White CB&I

AWS A5C Subcommittee on Aluminum-Alloy Filler Metals

T. Anderson, Chair ITW Welding North America
R. K. Gupta, Secretary American Welding Society
P. Berube Hobart Aluminum
B. C. Boehringer The Lincoln Electric Company
W. D. England ITW Welding North America
G. F. Hofmann E-ONE, Incorporated
M. James Consultant
S. E. Pollard Machinists, Incorporated
W. J. Sperko Sperko Engineering Services
L. T. Vernam AlcoTec Wire Corporation
J. Zhang Indalco Alloys Incorporated of Lincoln Electric

Advisors to the A5C Subcommittee on Aluminum-Alloy Filler Metals

T. S. Alemayehu Sikorsky Aircraft Corporation
B. E. Anderson Consultant
B. J. Farkas Nexal Aluminum, Incorporated
J. S. Lee Chevron
V. van der Mee Lincoln Electric Europe bv
G. J. White Hobart Filler Metals
D. A. Wright Wright Welding Technologies
Foreword

This foreword is not part of this standard, but is included for informational purposes only.

This is the second edition of this specification with modified adoption of ISO 18273:2004, Welding Consumables — Wire Electrodes, Wires and Rods for Welding of Aluminum and Aluminum-Alloys — Classification. Classification in accordance with this document requires prescribed weld testing which is not a requirement of ISO 18273:2004. Therefore, classification in accordance with ISO 18273:2004 does not provide classification in accordance with this document unless this weld testing is successfully conducted.

This document makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore, each system must be used independently of the other, without combining values in any way. For selecting rational metric units, AWS A1.1, Metric Practice Guide for the Welding Industry, is used where suitable. Tables and figures make use of both U.S. Customary and SI Units, which, with the application of the specified tolerances, provide for interchangeability of products in both U.S. Customary and SI Units.

ISO uses comma (,) for decimal, but AWS uses period (.) for decimal. Decimal commas have been changed to decimal periods.

Classifications ER4943 and R4943 are subject to a pending patent application.

NOTE: The user’s attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer.

Changes in this edition include the following:

Added Clause A10, “Mechanical Properties of Weld Metal”

Added Table A.2—Typical Historical Properties of Aluminum Filler Metals (as-welded condition)

Added Table A.3—Weld Metal Test Results (All weld-metal—as welded)—developed by the methodology of Clause A10 herein

Added Table A.4—Weld Metal Test Results (All weld-metal—PWHT)—developed by the methodology of Clause A10 herein

Added Figure A.1, “Preparation of Test Piece”

This specification developed as follows:

- ASTM B285-54T, Tentative Specification for Aluminum and Aluminum-Alloy Welding Rods and Bare Electrodes
- AWS A5.10-54T
- ASTM B285-57T, Tentative Specification for Aluminum and Aluminum-Alloy Welding Rods and Bare Electrodes
- AWS A5.10-57T
- AWS A5.10-61T, Tentative Specification for Aluminum and Aluminum-Alloy Welding Rods and Bare Electrodes
- ASTM B285-61T
- AWS A5.10-69, Specification for Aluminum and Aluminum-Alloy Welding Rods and Bare Electrodes
- ANSI W5.10-1973
Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS A5 Committee on Filler Metals and Allied Materials, American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Table of Contents

<table>
<thead>
<tr>
<th>Personnel</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>1. Scope</td>
<td>1</td>
</tr>
<tr>
<td>2. Normative References</td>
<td>1</td>
</tr>
<tr>
<td>3. Classifications</td>
<td>2</td>
</tr>
<tr>
<td>4. Acceptance</td>
<td>2</td>
</tr>
<tr>
<td>5. Certification</td>
<td>2</td>
</tr>
<tr>
<td>6. Rounding Procedure</td>
<td>2</td>
</tr>
<tr>
<td>7. Summary of Tests</td>
<td>6</td>
</tr>
<tr>
<td>8. Retest</td>
<td>6</td>
</tr>
<tr>
<td>9. Weld Test Assemblies</td>
<td>6</td>
</tr>
<tr>
<td>10. Chemical Analysis</td>
<td>10</td>
</tr>
<tr>
<td>11. Radiographic Test</td>
<td>10</td>
</tr>
<tr>
<td>12. Bead-on-Plate Test</td>
<td>12</td>
</tr>
<tr>
<td>13. Method of Manufacture</td>
<td>12</td>
</tr>
<tr>
<td>14. Standard Sizes</td>
<td>12</td>
</tr>
<tr>
<td>15. Finish and Uniformity</td>
<td>15</td>
</tr>
<tr>
<td>16. Standard Package Forms</td>
<td>15</td>
</tr>
<tr>
<td>17. Winding Requirements</td>
<td>15</td>
</tr>
<tr>
<td>18. Filler Metal Identification</td>
<td>15</td>
</tr>
<tr>
<td>19. Packaging</td>
<td>15</td>
</tr>
<tr>
<td>20. Marking of Packages</td>
<td>16</td>
</tr>
<tr>
<td>21. Symbols and Requirements</td>
<td>16</td>
</tr>
<tr>
<td>22. Mechanical Properties of the Weld Metal</td>
<td>16</td>
</tr>
</tbody>
</table>

Annex B (Informative)—Guidelines for Preparation of Technical Inquiries .. 31
Annex C (Informative)—List of Deviations from ISO 18273:2004 33
AWS Filler Metal Specifications by Material and Welding Process 35
AWS Filler Metal Specifications and Related Documents 37
List of Tables

Table	Page No.
1 Symbols and Chemical Composition Requirements of Solid Wires and Rods | 3
2 Required Tests | 7
3 Base Metal for Test Assemblies | 10
4 Standard Sizes | 14
5 Typical Sizes of Flattened Rods | 15
6 Standard Packages, Dimensions, and Weights | 16
A.1 Guide to the Choice of Filler Metal for General Purpose Welding | 23
A.2 Typical Historical Properties of Aluminum Filler Metals (as-welded condition) | 27
A.3 Weld Metal Test Results (All weld-metal—as welded)—developed by the methodology of Clause A10 herein | 27
A.4 Weld Metal Test Results (All weld-metal—PWHT)—developed by the methodology of Clause A10 herein | 27
A.5 Discontinued Bare Aluminum and Aluminum-Alloy Welding Electrodes and Rods | 28

List of Figures

Figure	Page No.
1 Groove Weld Test Assembly for Radiographic Test | 9
2A Radiographic Acceptance Standards for 3/16 in [5 mm] and 1/4 in [6 mm] Thick Test Assemblies—Overhead Welding Position | 11
3 Radiographic Acceptance Standard for Test Assemblies—Flat Welding Position | 13
A.1 Preparation of Test Piece | 26
Welding Consumables—Wire Electrodes, Wires and Rods for Welding of Aluminum and Aluminum Alloys—Classification

1. Scope

1.1 This standard specifies requirements for classification of solid wires and rods for fusion welding of aluminum and aluminum alloys. The classification of the solid wires and rods is based on their chemical composition.

1.2 Safety and health issues and concerns are beyond the scope of this standard and are therefore not fully addressed herein. Some safety and health information can be found in the nonmandatory Annex A Clauses A6 and A13. Safety and health information is available from other sources, including, but not limited to, ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes, and applicable federal and state regulations.

1.3 This specification makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore, each system must be used independently of the other without combining in any way when referring to weld metal properties. The specification A5.10 uses U.S. Customary Units. The specification with the designation A5.10M uses SI Units. The latter are shown within brackets [] or in appropriate columns in tables and figures. Standard dimensions based on either system may be used for the sizing of electrodes or packaging or both under specification A5.10 or A5.10M.

2. Normative References

This standard incorporates, by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

2.1 The following AWS standards1 are referenced in the mandatory clauses of this document:

AWS A1.1, Metric Practice Guide for the Welding Industry
AWS A3.0M/A3.0, Standard Welding Terms and Definitions, Including Terms for Adhesive Bonding, Brazing, Soldering, Thermal Cutting, and Thermal Spraying
AWS A5.01M/A5.01 (ISO 14344 MOD), Welding Consumables—Procurement of Filler Metals and Fluxes
AWS A5.02/A5.02M:2007, Specification for Filler Metal Standard Sizes, Packaging, and Physical Attributes
AWS B4.0 or AWS B4.0M, Standard Methods for Mechanical Testing of Welds
AWS F3.2M/F3.2, Ventilation Guide for Weld Fume

2.2 The following ANSI standard is referenced in the mandatory clauses of this document:

ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes2

1 AWS standards are published by the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
2 This ANSI standard is published by the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.