Specification for Surfacing Electrodes for Shielded Metal Arc Welding
Abstract

This specification prescribes the requirements for classification of surfacing electrodes for shielded metal arc welding. Classification is based upon the chemical composition of the deposited weld metal except for tungsten carbide electrodes where classification is based on the mesh range, quantity, and composition of the tungsten carbide granules. A guide is appended to the specification as a source of information as to the characteristics and applications of the classified electrodes.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. When this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. Users should ensure that they have the latest edition. Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

Finally, the AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so. On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Personnel

AWS A5 Committee on Filler Metals and Allied Materials

J. S. Lee, Chair
H. D. Wehr, 1st Vice-Chair
J. J. DeLoach, Jr., 2nd Vice-Chair
R. Gupta, Secretary
T. Anderson
J. M. Blackburn
R. Brown
J. C. Bundy
D. D. Crockett
R. V. Decker
D. A. DelSignore
J. DeVito
H. W. Ebert
D. M. Fedor
J. G. Feldstein
S. E. Ferree
D. A. Fink
G. L. Franke
R. D. Fuchs
R. M. Henson
S. D. Kiser
P. J. Konkol
D. J. Kotecki
L. Kvidahl
A. Y. Lau
A. S. Laurenson
W. A. Marttila
T. Meliti
R. Menon
M. T. Merlo
B. Mosier
A. K. Mukherjee
C. L. Null
R. L. Peaslee
K. C. Pruden
S. D. Reynolds, Jr.
P. K. Salvesen
K. Sampath
W. S. Severance
M. J. Sullivan
R. Sutherland
R. A. Swain
K. P. Thornberry
M. D. Tumuluru
Chevron
Arcos Industries, LLC
Naval Surface Warfare Center
American Welding Society
ESAB Welding & Cutting Products
Naval Sea Systems Command
RSB Alloy Applications, LLC
Hobart Brothers Company
The Lincoln Electric Company
Weldstar
ESAB Welding & Cutting Products
Consultant
The Lincoln Electric Company
Foster Wheeler North America
ESAB Welding & Cutting Products
The Lincoln Electric Company
Naval Surface Warfare Center
Bohler Welding Group USA, Incorporated
J. W. Harris Company, Incorporated
Special Metals
Concurrent Technologies Corporation
Damian Kotecki Welding Consultants
Northrop Grumman Ship Systems
Canadian Welding Bureau
Consultant
Chrysler LLC
The Lincoln Electric Company
Stoody Company
HyperTech Research, Incorporated
Polymet Corporation
Siemens Power Generation Incorporated
Consultant
Wall Colmonoy Corporation
Hydril Company
Consultant
Det Norske Veritas (DNV)
Consultant
ESAB Welding & Cutting Products
NASSCO-Natl Steel & Shipbuilding
ATI Wah Chang
Euroweld, Limited
Care Medical, Incorporated
US Steel Corporation

Advisors to the AWS A5 Committee on Filler Metals and Allied Materials

R. L. Bateman
R. A. Daemen
C. E. Fuerstenau
J. P. Hunt
S. Imaoka
M. P. Parekh
M. A. Quintana
E. R. Stevens
Electromanufacturas, S. A.
Consultant
Lucas-Milhaupt, Incorporated
Consultant
Kobe Steel Limited
Consultant
The Lincoln Electric Company
Stevens Welding Consulting
E. S. Surian National University of Lomas de Zamora

AWS A5G Subcommittee on Hardfacing Filler Metals

R. Menon, Chair Stoody Company
R. K. Gupta, SEC American Welding Society
F. Broshjeit Farrel Corporation
J. Dezelle Kennametal Energy Mining
G. L. Fillion Wall Colmonoy Corporation
S. P. Iyer Weartech International, Incorporated
W. E. Layo Midalloy
J. G. Postle Postle Industries, Incorporated
V. B. Rajan The Lincoln Electric Company
G. C. Schmid Bechtel Bettis, Incorporated
A. P. Yelistratov Caterpillar, Incorporated

Advisors to the AWS A5G Subcommittee on Hardfacing Filler Metals

J. B. C. Wu Deloro Stellite Group
Foreword

This foreword is not part of AWS A5.13/A5.13M:2010, Specification for Surfacing Electrodes for Shielded Metal Arc Welding, but is included for informational purposes only.

The first AWS specification for surfacing filler metals was published in 1956 as a joint ASTM/AWS specification. It was the first of what would later become a two-set series, A5.13 and A5.21.

The composite electrodes and rods classifications were removed from the 1970 revision of A5.13 and placed into a new specification, A5.21. A5.13–70 specification contained requirements for both covered and bare electrodes or rods employing solid core only. This distinction was maintained for the 1980 revision of A5.13.

The revisions of both A5.13:2000 and A5.21:2001 incorporated a totally different scope. The method of manufacture of the core of the electrode or rod was no longer a factor in determining placement of a classification. Instead, the covered electrode products were classified under AWS A5.13:2000 and the bare electrode products under AWS A5.21:2001.

This document is the first of the A5.13 specifications which makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore each system must be used independently of the other, without combining values in any way. In selecting rational metric units, ANSI/AWS A1.1, Metric Practice Guide for the Welding Industry, and ISO 544 Welding consumables – Technical delivery conditions for welding filler materials – Type of product, dimensions, tolerances and marking, are used where suitable. Tables and figures make use of both the U.S. Customary and SI Units, which, with the application of the specified tolerances, provides for interchangeability of products in both the U.S. Customary and SI Units.

Rounding-off Procedure has been revised in this edition. Detailed general safety information in Clause A9 has been replaced by Safety and Health Fact Sheets. Such substantive changes are shown in Italic font in this specification.

The historical evolution of the specification is:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 399-56T</td>
<td>Tentative Specification for Surfacing Welding Rods and Electrodes</td>
</tr>
<tr>
<td>AWS A5.13-56T</td>
<td>Specification for Surfacing Welding Rods and Electrodes</td>
</tr>
<tr>
<td>AWS A5.13-70</td>
<td>Specification for Surfacing Welding Rods and Electrodes</td>
</tr>
<tr>
<td>ANSI/AWS A5.13-80</td>
<td>Specification for Surfacing Electrodes for Shielded Metal Arc Welding</td>
</tr>
</tbody>
</table>

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS A5 Committee on Filler Metals and Allied Materials, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Table of Contents

Personnel ... v
Foreword ... vii
List of Tables ... x
List of Figures .. x

1. Scope ... 1
2. Referenced Documents .. 1
3. Classification ... 2
4. Acceptance ... 2
5. Certification ... 2
6. Rounding-Off Procedure ... 2
7. Summary of Tests .. 2
8. Retest ... 6
9. Weld Test Assembly .. 7
10. Chemical Analysis ... 7
10.1 For All Except Covered Tungsten Carbide Electrodes .. 7
10.2 For Tungsten Carbide Electrodes .. 7
11. Method of Manufacture .. 9
12. Standard Sizes and Lengths .. 9
13. Core Wire and Covering .. 10
14. Exposed Core ... 10
15. Electrode Identification ... 10
16. Packaging .. 11
17. Marking of Packages ... 11

Annex B (Informative)—Guidelines for the Preparation of Technical Inquiries .. 27

AWS Filler Metal Specifications by Material and Welding Process .. 29
AWS Filler Metal Specifications and Related Documents .. 31
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Iron Base Surfacing Electrodes—Chemical Composition Requirements</td>
</tr>
<tr>
<td>2</td>
<td>Nickel and Cobalt Base Surfacing Electrodes—Chemical Composition Requirements</td>
</tr>
<tr>
<td>3</td>
<td>Copper Base Surfacing Electrodes—Chemical Composition Requirements</td>
</tr>
<tr>
<td>4</td>
<td>Mesh Size and Quantity of Tungsten Carbide (WC) Granules in the Core of Tungsten Carbide Electrodes</td>
</tr>
<tr>
<td>5</td>
<td>Chemical Composition of Tungsten Carbide (WC) Granules</td>
</tr>
<tr>
<td>6</td>
<td>Standard Sizes and Lengths of Covered Electrodes Using Solid Drawn Core Wire</td>
</tr>
<tr>
<td>7</td>
<td>Standard Sizes and Lengths for Covered Cast and Composite Tubular Electrodes</td>
</tr>
<tr>
<td>8</td>
<td>Standard Sizes and Lengths for Covered Tungsten Carbide (WC) Electrodes</td>
</tr>
<tr>
<td>A.1</td>
<td>Comparison of Classifications</td>
</tr>
<tr>
<td>A.2</td>
<td>Effect of Shielded Metal Arc Variables on the Three Most Important Characteristics of Surfacing</td>
</tr>
<tr>
<td>A.3</td>
<td>Approximate Weld Deposit Hardness (SMAW)</td>
</tr>
<tr>
<td>A.4</td>
<td>Discontinued Electrode and Rod Classifications</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pad for Chemical Analysis of Undiluted Weld Metal</td>
</tr>
</tbody>
</table>
Specification for Surfacing Electrodes for Shielded Metal Arc Welding

1. Scope

1.1 This specification prescribes requirements for the classification of surfacing electrodes for shielded metal arc welding. Solid bare electrodes and rods for surfacing are classified in AWS A5.21:2001, Specification for Bare Electrodes and Rods for Surfacing (see Clause A8 in Annex A).

1.2 Safety and health issues and concerns are beyond the scope of this standard and, therefore, are not fully addressed herein. Some safety and health information can be found in Clauses A5 and A9 in Annex A. Safety and health information is available from other sources, including, but not limited to ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes, and applicable federal and state regulations.

1.3 This specification makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore, each system must be used independently of the other without combining in any way when referring to material properties. The specification with the designation A5.13 uses the U.S. Customary Units. The specification A5.13M uses the SI Units. The latter are shown within brackets [] or in appropriate columns in tables and figures. Standard dimensions based on either system may be used for sizing of filler metal or packaging or both under A5.13 or A5.13M specifications.

2. Referenced Documents

The following documents are referenced within this publication. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

2.1 AWS standards
(1) AWS A5.01M/A5.01(ISO 14344), Procurement Guidelines for Consumables – Welding and Allied Processes – Flux and Gas Shielded Electrical Welding Processes
(2) AWS A3.0, Standard Welding Terms and Definitions
(3) AWS F3.2, Ventilation Guide for Weld Fume

2.2 ANSI standard
(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes

2.3 ASTM standards
(1) ASTM A 36/A 36M, Standard Specification for Carbon Structural Steels

1 AWS Standards are published by the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
2 ANSI Z49.1 is published by the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
3 ASTM Standards are published by the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.