Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding

AWS A5.23/A5.23M:2011
An American National Standard
Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding

6th Edition

Supersedes AWS A5.23/A5.23M:2007

Prepared by the American Welding Society (AWS) A5 Committee on Filler Metals and Allied Materials

Under the Direction of the AWS Technical Activities Committee

Approved by the AWS Board of Directors

Abstract

This specification provides requirements for the classification of solid and composite carbon steel and low-alloy steel electrodes and fluxes for submerged arc welding. Electrode classification is based on chemical composition of the electrode for solid electrodes, and chemical composition of the weld metal for composite electrodes. Fluxes may be classified using a multiple pass classification system or a two-run classification system, or both, under this specification. Multiple pass classification is based on the mechanical properties and the deposit composition of weld metal produced with the flux and an electrode classified herein. Two-run classification is based upon mechanical properties only. Additional requirements are included for sizes, marking, manufacturing and packaging. The form and usability of the flux are also included. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of submerged arc fluxes and electrodes.

This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. This standard may also be corrected through publication of amendments or errata. It may also be supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda are posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

The AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex B).

With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
This page is intentionally blank.
Personnel

AWS A5 Committee on Filler Metals and Allied Materials

H. D. Wehr, Chair Arcos Industries, LLC
J. J. DeLoach Jr., Vice Chair Naval Surface Warfare Center
R. D. Fuchs, 2nd Vice Chair Böhler Welding Group USA, Incorporated
R. K. Gupta, Secretary American Welding Society
T. Anderson ESAB Welding & Cutting Product
J. M. Blackburn Naval Sea Systems Command
J. C. Bundy Hobart Brothers Company
D. D. Crockett Consultant
R. V. Decker Weldstar
D. A. DelSignore Consultant
J. DeVito ESAB Welding & Cutting Products
H. W. Ebert Consulting Welding Engineer
D. M. Fedor The Lincoln Electric Company
J. G. Feldstein Foster Wheeler North America
S. E. Ferree ESAB Welding & Cutting Products
D. A. Fink The Lincoln Electric Company
G. L. Franke Naval Surface Warfare Center
R. M. Henson J.W. Harris Company, Incorporated
S. D. Kiser Special Metals
P. J. Konkol Concurrent Technologies Corporation
D. J. Kotecki Damian Kotecki Welding Consultants
L. G. Kvidahl Ingalls Shipbuilding
A. Y. Lau Canadian Welding Bureau
J. S. Lee Chevron
T. Melfi The Lincoln Electric Company
K. M. Merlo EWI
M. T. Merlo RevWires LLC
B. Mosier Polymet Corporation
A. K. Mukherjee Siemens Power Generation, Incorporated
T. C. Myers American Bureau of Shipping
C. L. Null Consultant
B. A. Fletcher CB&I, Incorporated
K. C. Pruden Hydril Company
K. Roossinck Ingalls Shipbuilding
P. K. Salvesen Det Norske Veritas (DNV)
K. Sampath Consultant
W. S. Severance ESAB Welding and Cutting Products
M. J. Sullivan NASSCO—Natl Steel and Shipbuilding
R. C. Sutherlin ATI Wah Chang
R. A. Swain Euroweld, Limited
M. D. Tumuluru US Steel Corporation

Advisors to the A5 Committee on Filler Metal and Allied Material

R. L. Bateman Soldaduras West Arco Limitada
J. E. Beckham Chrysler LLC
M. L. Caruso Special Metals
R. A. Daemen Consultant
AWS A5B Subcommittee on Carbon and Low Alloy Steel Electrodes and Fluxes for Submerged Arc Welding

T. Melfi, Chair The Lincoln Electric Company
R. K. Gupta, Secretary American Welding Society
H. Beck Harbert’s Products, Incorporated
H. W. Ebert Consultant
S. Francis Berg Steel Pipe Corporation
R. D. Fuchs Bohler Thyssen Welding USA, Incorporated
M. T. Merlo HyperTech Research, Incorporated
D. W. Meyer ESAB Welding & Cutting Products
T. C. Myers American Bureau of Shipping
P. J. Nicklas Sunset Metal Works
R. D. Strugar Bechtel Plant Machinery, Incorporated
R. A. Swain Euroweld, Limited

Advisors to the A5B Subcommittee on Carbon and Low Alloy Steel Electrodes and Fluxes for Submerged Arc Welding

D. D. Crockett Consultant
S. Imaoka Kobe Steel Limited
D. R. Miller ABS Americas Materials Department
D.M. Parker Consultant
F. A. Rhoades Hobart Brothers Company
A. C. Souza Lincoln Electric do Brasil
This page is intentionally blank.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>v</td>
</tr>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>1. Scope</td>
<td>1</td>
</tr>
<tr>
<td>2. Normative References</td>
<td>1</td>
</tr>
<tr>
<td>3. Classification</td>
<td>3</td>
</tr>
<tr>
<td>4. Acceptance</td>
<td>14</td>
</tr>
<tr>
<td>5. Certification</td>
<td>14</td>
</tr>
<tr>
<td>6. Rounding-Off Procedure</td>
<td>14</td>
</tr>
<tr>
<td>7. Summary of Tests</td>
<td>14</td>
</tr>
<tr>
<td>7.1 Electrodes</td>
<td>14</td>
</tr>
<tr>
<td>7.2 Fluxes</td>
<td>14</td>
</tr>
<tr>
<td>8. Retest</td>
<td>16</td>
</tr>
<tr>
<td>9. Weld Test Assemblies</td>
<td>16</td>
</tr>
<tr>
<td>9.1 Requirements for Classification</td>
<td>16</td>
</tr>
<tr>
<td>9.2 Preparation</td>
<td>19</td>
</tr>
<tr>
<td>9.3 Weld Pad</td>
<td>19</td>
</tr>
<tr>
<td>9.4 Groove Weld for Multiple Pass Classifications</td>
<td>21</td>
</tr>
<tr>
<td>9.5 Butt Weld for Two-Run Classifications</td>
<td>22</td>
</tr>
<tr>
<td>9.6 Diffusible Hydrogen</td>
<td>22</td>
</tr>
<tr>
<td>10. Chemical Analysis</td>
<td>22</td>
</tr>
<tr>
<td>11. Radiographic Test</td>
<td>22</td>
</tr>
<tr>
<td>12. Tension Test</td>
<td>23</td>
</tr>
<tr>
<td>13. Impact Test</td>
<td>25</td>
</tr>
<tr>
<td>14. Diffusible Hydrogen Test</td>
<td>25</td>
</tr>
<tr>
<td>15. Method of Manufacture</td>
<td>26</td>
</tr>
<tr>
<td>15.1 Crushed Slags</td>
<td>26</td>
</tr>
<tr>
<td>16. Electrode Requirements</td>
<td>26</td>
</tr>
<tr>
<td>16.1 Standard Sizes</td>
<td>26</td>
</tr>
<tr>
<td>16.2 Finish and Uniformity</td>
<td>26</td>
</tr>
<tr>
<td>16.3 Standard Package Forms</td>
<td>26</td>
</tr>
<tr>
<td>16.4 Winding Requirements</td>
<td>27</td>
</tr>
<tr>
<td>16.5 Electrode Identification</td>
<td>27</td>
</tr>
<tr>
<td>16.6 Packaging</td>
<td>27</td>
</tr>
<tr>
<td>16.7 Marking of Packages</td>
<td>27</td>
</tr>
</tbody>
</table>