Specification for Zirconium and Zirconium-Alloy Welding Electrodes and Rods

AWSA 5.24/A5.24M:2014
An American National Standard
Abstract

This specification prescribes the requirements for classification of zirconium and zirconium alloy electrodes and rods for gas metal arc welding, gas tungsten arc welding, and plasma arc welding. The compositions specified for each classification represent the latest state-of-the-art. Additional requirements are included for testing procedures, manufacture, sizes, lengths, and packaging. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of the zirconium-alloy filler metal.

This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 NW 36 St, #130, Miami, FL 33166 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166.
Personnel

AWS A5 Committee on Filler Metals and Allied Materials

H. D. Wehr, Chair
J. J. DeLoach Jr., 1st Vice Chair
R. D. Fuchs, 2nd Vice Chair
R. K. Gupta
T. Anderson
J. C. Bundy
J. L. Caron
D. D. Crockett
R. V. Decker
D. M. Fedor
J. G. Feldstein
S. E. Ferree
D. A. Fink
G. L. Franke
R. M. Henson
S. D. Kiser
P. J. Konkol
D. J. Kotecki
L. G. Kvidahl
A. Y. Lau
J. S. Lee
T. Melfi
M. T. Merlo
K. M. Merlo-Joseph
B. Mosier
A. K. Mukherjee
T. C. Myers
B. A. Fletcher
K. C. Pruden
K. Roosinck
P. K. Salvesen
K. Sampath
F. A. Schweighardt
W. S. Severance
M. F. Sinfield
R. C. Sutherlin
R. A. Swain
J. Zhang

Arcos Industries, LLC
Naval Surface Warfare Center
voestalpine Bohler Welding USA, Inc.
American Welding Society
ITW Welding North America
Hobart Brothers Company
Haynes International, Incorporated
Consultant
The Lincoln Electric Company
Foster Wheeler North America
ESAB Welding and Cutting Products
The Lincoln Electric Company
Naval Surface Warfare Center
Harris Products Group
Consultant
Concurrent Technologies Corporation
Damian Kotecki Welding Consultants
Ingalls Shipbuilding
Canadian Welding Bureau
Chevron
RevWires, LLC
Apeks Supercritical
Polymet Corporation
Siemens Energy, Inc.
Oceaneering Intervention Engineering
Select-Arc
BP Americas
Ingalls Shipbuilding
Det Norske Veritas (DNV)
Chart Industries, Incorporated
Air Liquid Industrial US LP
ESAB Welding and Cutting Products
Naval Surface Warfare Center
ATT Wah Chang
Euroweld, Ltd.
Indalco Alloys—Lincoln Electric Company

Advisors to the AWS A5 Committee on Filler Metals and Allied Materials

R. Bateman
J. E. Beckham
J. M. Blackburn
M. L. Caruso
R. A. Daemon
B. S. Dauble
T. A. Davenport
D. A. DelSignore
J. DeVito
H. W. Ebert
W. D. England
C. E. Fuerstenau

Soldaduras West Arco SAS
Chrysler Group, LLC.
Naval Sea Systems Command
Special Metals Welding Products Company
Consultant
Carpenter Technology Corporation
PRL Industries
Consultant
Consulting Welding Engineer
ITW Welding North America
Lucas-Milhaupt, Inc.
J. P. Hunt Consultant KOBE Steel, Ltd.
S. Imaoka Consultant HOBBart Brothers
S. J. Knostman Consultant WAMcom Consulting, LLC.
W. A. Martilla Consultant Stoody Company
R. Menon Consultant WAMcom Consulting, LLC.
C. L. Null Consultant Stooty Company
M. P. Parekh Consultant Hobart Brothers
J. W. Price Consultant WAMcom Consulting, LLC.
M. A. Quintana Consultant The Lincoln Electric Company
M. J. Sullivan Consultant NASSCO
M. D. Tumuluru Consultant DMI Industries
H. J. White Consultant U.S. Steel

AWS A5K Subcommittee on Titanium and Zirconium Filler Metal

R. C. Sutherlin, Chair ATI Wah Chang
A. L. Diaz, Secretary American Welding Society
S. S. Delmore CK Worldwide, Incorporated
B. Krueger Los Alamos National Laboratory
K. T. Tran Naval Surface Warfare Center
G. E. Trepus Boeing Research and Technology

Advisors to the AWS A5K Subcommittee on Titanium and Zirconium Filler Metal

H. Kotaki Consultant PCC Energy Group
J. A. McMaster Consultant MC Consulting
S. D. Sparkowich Consultant Nerac, Incorporated
Foreword

This foreword is not part of AWS A5.24/A5.24M:2014, Specification for Zirconium and Zirconium-Alloy Welding Electrodes and Rods, but is included for informational purposes only.

This specification makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore, each system must be used independently of the other, without combining values in any way when referring to filler metal properties. In selecting rational metric units, the AWS A1.1, Metric Practice Guide for the Welding Industry and International Standard ISO 544, Welding consumables—Technical delivery conditions for welding filler metals—Type of product, dimensions, tolerances, and markings, are used where suitable. Tables and figures make use of both U.S. Customary and SI Units, which with the application of the specified tolerances provides for interchangeability of products in both the U.S. Customary and SI Units.

The first Specification for Zirconium and Zirconium Bare Welding Rods and Electrodes was prepared by the Subcommittee on Zirconium Filler Metal in 1976. This edition originally had three electrode classifications, ERZr1, ERZr2 and ERZr3. In the 1979 edition, the very pure grade of zirconium (ErZr1) was deleted and an additional grade, ERZr4 (with 2%–3% Niobium), was added to the specification and includes an addition to the check analysis tolerance by the joint AWS Subcommittee on Titanium and Zirconium Filler Metals. In 1990, the specification was revised to include the Acceptance and Certification clauses to the appendix. In 2005, the specification was revised to include an oxygen range for all electrode classifications. This was done to take into account the oxygen pickup during the zirconium welding process in order to create final weld strength similar to that of the parent metal. Additionally, the 2005 A5.24 specification was the first to use both the U.S. Customary Units and the International System Units (SI). AWS A5.24/A5.24M:2014, Specification for Zirconium and Zirconium-Alloy Welding Electrodes and Rods, is the fourth revision of the document. This revision primarily includes updates to the reference documents.

A vertical line in the margin or underlined text in clauses, tables, or figures indicates an editorial or technical change from the 2005 edition.

Previous editions of the document are as follows:
- AWS A5.24-76, Specification for Zirconium and Zirconium Alloy Bare Welding Rods and Electrodes
- AWS A5.24-79, Specification for Zirconium and Zirconium Alloy Bare Welding Rods and Electrodes
- ANSI/AWS A5.24-90, Specification for Zirconium and Zirconium Alloy Welding Electrodes and Rods

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS A5 Committee on Procedure and Performance Qualification, American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166.
Table of Contents

Personnel .. iv
Foreword ... vi
List of Tables .. viii

1. **Scope** ... 1
2. **Normative References** ... 1
3. **Classification** .. 2
4. **Acceptance** .. 2
5. **Certification** .. 2
6. **Rounding Procedure** ... 2
7. **Summary of Tests** ... 4
8. **Retest** ... 4
9. **Chemical Analysis** ... 4
10. **Method of Manufacture** .. 4
11. **Standard Sizes and Lengths** .. 4
12. **Finish and Uniformity** .. 4
13. **Standard Package Forms** .. 4
14. **Winding Requirements** ... 6
15. **Filler Metal Identification** ... 6
16. **Packaging** ... 6
17. **Marking of Packages** ... 7

Nonmandatory Annexes ... 9
Annex B—Guidelines for the Preparation of Technical Inquiries for AWS Technical Committees ... 15
AWS Filler Metal Specifications by Material and Welding Process .. 17
AWS Filler Metal Specifications and Related Documents .. 19
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemical Composition Requirements for Zirconium and Zirconium-Alloy Electrodes and Rods</td>
</tr>
<tr>
<td>2</td>
<td>Standard Sizes and Lengths</td>
</tr>
<tr>
<td>3</td>
<td>Standard Packages, Dimensions, and Weights</td>
</tr>
<tr>
<td>A1</td>
<td>Specification Cross Index—Including Discontinued Zirconium Electrodes</td>
</tr>
</tbody>
</table>
Specification for Zirconium and Zirconium-Alloy Welding Electrodes and Rods

1. Scope

1.1 This specification prescribes requirements for the classification of zirconium and zirconium-alloy electrodes and rods for gas metal arc, gas tungsten arc, and plasma arc welding.

1.2 This standard makes use of both U.S. Customary Units and the International System of Units (SI). The latter are shown within brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard and therefore are not addressed herein. Safety and health information is available from the following sources:

- American Welding Society:
 (1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
 (2) AWS Safety and Health Fact Sheets
 (3) Other safety and health information on the AWS website

- Material or Equipment Manufacturers:
 (1) Material Safety Data Sheets supplied by materials manufacturers
 (2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

2. Normative References

2.1 The following ANSI/AWS standards\(^1\) are referenced in the mandatory sections of this document:

(1) AWS A5.01M/A5.01 (ISO 14344 MOD), Procurement Guidelines for Consumables-Flux and Gas Shielded Electrical Welding Processes;

(2) AWS A5.02/A5.02M : 2007, Specification for Filler Metal Standard Sizes, Packaging, and Physical Attributes; and

(3) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes.

\(^1\) AWS standards are published by the American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166.