Welding Consumables—
Gases and Gas Mixtures for
Fusion Welding and Allied Processes

AWS A5.32M/A5.32:2011
(ISO 14175:2008 MOD)
An American National Standard
Abstract

This standard prescribes the requirement for the classification of gases and gas mixtures for fusion welding and allied processes. Classification is based on composition of the more popular single and multi-component gases. Additional requirements are included for purity and moisture of individual gas components, testing, retesting, packaging, and cylinder or container labeling. An annex is appended to the standard as a source of information concerning the classification system and the intended use of the gases and gas mixtures.

This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. When this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. Users should ensure that they have the latest edition.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

Finally, the AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
This page is intentionally blank.
Personnel

AWS A5 Committee on Filler Metals and Allied Materials

J. S. Lee, Chair  Chevron
H. D. Wehr, Vice Chair  Arcos Industries, LLC
J. J. DeLoach Jr., 2nd Vice Chair  Naval Surface Warfare Center
R. K. Gupta, Secretary  American Welding Society
T. Anderson  ESAB Welding and Cutting Product
J. M. Blackburn  Naval Sea Systems Command
J. C. Bundy  Hobart Brothers Company
D. D. Crockett  Consultant
R. V. Decker  Weldstar
D. A. DelSignore  Consultant
J. DeVito  ESAB Welding and Cutting Products
H. W. Ebert  Consulting Welding Engineer
D. M. Fedor  The Lincoln Electric Company
J. G. Feldstein  Foster Wheeler North America
S. E. Ferree  ESAB Welding and Cutting Products
D. A. Fink  The Lincoln Electric Company
G. L. Franke  Naval Surface Warfare Center
R. D. Fuchs  Böhler Welding Group USA, Incorporated
R. M. Henson  J.W. Harris Company, Incorporated
S. D. Kiser  Special Metals
P. J. Konkol  Concurrent Technologies Corporation
D. J. Kotecki  Damian Kotecki Welding Consultants
L. G. Kvidahl  Northrop Grumman Ship Systems
A. Y. Lau  Canadian Welding Bureau
W. A. Marttila  Chrysler LLC
T. Melfi  The Lincoln Electric Company
R. Menon  Stoody Company
M. T. Merlo  Hyper Tech Research Incorporated
B. Mosier  Polymet Corporation
A. K. Mukherjee  Siemens Power Generation, Incorporated
C. L. Null  Consultant
K. C. Pruden  Hydril Company
S. D. Reynolds, Jr.  Consultant
P. K. Salvesen  Det Norske Veritas (DNV)
K. Sampath  Consultant
W. S. Severance  ESAB Welding and Cutting Products
M. J. Sullivan  NASSCO—National Steel and Shipbuilding
R. C. Sutherlin  ATI Wah Chang
R. A. Swain  Euroweld, Limited
K. P. Thornberry  Care Medical, Incorporated
M. D. Tumuluru  US Steel Corporation
H. J. White  HAYNES International

Advisors to the AWS A5 Committee on Filler Metal and Allied Material

R. L. Bateman  Soldaduras West Arco Limitada
R. A. Daemen  Consultant
C. E. Fuerstenau  LucasMilhaupt Incorporated
J. P. Hunt  Special Metals
S. Imaoka  Kobe Steel Limited
D. R. Miller  ABS Americas Materials Department
M. P. Parekh  Consultant
M. A. Quintana  The Lincoln Electric Company
E. R. Stevens  Stevens Welding Consulting
E. S. Surian  National University of Lomas de Zamora

AWS A5S Subcommittee on Gases for Gas Shielded Arc Welding and Cutting

J. DeVito, Chair  ESAB Welding & Cutting Products
J. M. Zawodny, VCH  Avesta Welding
R. K. Gupta, Secretary  American Welding Society
E. Colvin  Consultant
Bryan George  Matheson Tri-Gas Incorporated
D. B. Leturno  Praxair
W. H. Meredith  Airgas, Incorporated
F. A. Schweighardt  Air Liquide Industries US LP

Advisors to the AWS A5S subcommittee on Gases for Gas Shielded Arc Welding

B. M. O’Neil  Consultant
Foreword

This foreword is not part of AWS A5.32M/A5.32:2011 (ISO 14175:2008 MOD), Welding Consumables — Gases and Gas Mixtures for Fusion Welding and Allied Processes, but is included for informational purposes only.

This is the first edition of this specification with modified adoption of ISO 14175: 2008, Welding Consumables — Gases and Gas Mixtures for Fusion Welding and Allied Processes.

This document makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore, each system must be used independently of the other, without combining values in any way. In selecting rational metric units, ANSI/AWS A1.1, Metric Practice Guide for the Welding Industry, is used where suitable. Tables and figures make use of both U.S. Customary and SI units, which with the application of the specified tolerances provide for interchangeability of products in both the U.S. Customary and SI Units.

ISO uses comma (,) for decimal, but AWS uses period (.) for decimal. Decimal commas have been changed to decimal periods.

This specification developed as below:

ANSI/AWS A5.32/A5.32M-97  Specification for Welding Shielding Gases

ANSI/AWS A5.32/A5.32M-97R  Specification for Welding Shielding Gases
# Table of Contents

**Personnel** .................................................. v
**Foreword** ....................................................... vii
**List of Tables** .................................................. xi

1. **Scope** .......................................................... 1

2. **Normative references** ......................................... 2
   2.1 AWS Standard .................................................. 2
   2.2 ASTM standards ............................................... 2
   2.3 ISO standard .................................................. 2

3. **Terms and definitions** ........................................ 2
   3.1 Base gas ...................................................... 2
   3.2 Classification ............................................... 2
   3.3 Component ................................................... 2
   3.4 Container .................................................... 2
   3.5 Designation .................................................. 2
   3.6 Impurity ...................................................... 2
   3.7 Mixture ....................................................... 2
   3.8 Nominal value ............................................... 2
   3.9 Symbol ....................................................... 2
   3.10 Trade name .................................................. 3

4. **Properties of gases** ........................................... 3
   4.1 General ....................................................... 3
   4.2 Rounding-off procedure ..................................... 3

5. **Classification and designation** .............................. 3
   5.1 Classification ............................................... 3
   5.2 Designation .................................................. 4

6. **Tolerances of mixtures** ...................................... 6

7. **Purities and dew point** ...................................... 6

8. **Testing** ....................................................... 6

9. **Retesting** ..................................................... 7

10. **Marking** ...................................................... 7

11. **Certification** ................................................ 8

12. **Cylinder residual gases** .................................... 9

13. **Packaging** .................................................... 9

**Bibliography** .................................................. 11

**National Annexes** ............................................. 13

Annex A (Informative)—Guide to Welding Consumable—Gases and Gas Mixture for Fusion
Welding and Allied Processes ........................................ 13
Annex B (Informative)—Guidelines for the Preparation of Technical Inquiries .......................... 23
Annex C (Informative)—List of Deviations from ISO 14175:2008 ........................................... 25

AWS Filler Metal Specifications by Material and Welding Process ........................................ 27
AWS Filler Metal Specifications and Related Documents ....................................................... 29
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Properties of gas components</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Classification of process gases for fusion welding and allied processes</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Mixture tolerances</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Minimum requirements on purities and moisture contents of gases and gas mixtures</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>Dew point conversion chart</td>
</tr>
</tbody>
</table>
Welding Consumables—Gases and Gas Mixtures for Fusion Welding and Allied Processes

1. Scope

This Standard specifies requirements for the classification of gases and gas mixtures used in fusion welding and allied processes including, but not limited to:

— gas tungsten arc welding — GTAW;
— gas metal arc welding — GMAW;
— flux cored arc welding — FCAW;
— plasma arc welding — PAW;
— plasma arc cutting — PAC;
— laser beam welding — LBW;
— laser beam cutting — LBC;
— arc braze welding — ABW;
— electrogas welding — EGW.

The purpose of this Standard is to classify and designate these gases and gas mixtures in accordance with their chemical properties and metallurgical behavior as the basis for correct selection by the user and to simplify the possible qualification procedures. The modes of application for gas shielded welding processes include, but are not limited to: manual, semiautomatic, mechanized, and automatic weld methods.

Gas purities and mixing tolerances are specified as delivered by the supplier (manufacturer) and not at the point of use.

Gases or gas mixtures may be supplied in either liquid or gaseous form, but when used for welding and allied processes, the gases are always used in the gaseous form.

Fuel gases, such as acetylene, natural gas, propane, etc., and resonator gases, as used in gas lasers, are not covered by this Standard.

Transportation and handling of gases and containers shall be in accordance with local, national, and regional standards and regulations as required.

Safety and health issues and concerns are beyond the scope of this standard and, therefore, are not fully addressed herein. Some safety and health information can be found in annex clause A5. Safety and health information is available from other sources, including, but not limited to: Safety and Health Fact Sheets listed in A8.3, ANSI Z49.1 Safety in Welding, Cutting and Allied Processes¹, and applicable federal and state regulations.

This specification makes use of both the International System of Units (SI) and U.S. Customary Units. The measurements are not exact equivalents; therefore, each system must be used independently of the other without combining in any way when referring to material properties. The specification A5.32M uses SI Units. The specification with the designation A5.32 uses U.S. Customary Units. The latter are shown within brackets [ ] or in appropriate columns in tables and figures. Standard dimensions based on either system may be used for packaging or both under A5.32M or A5.32 specifications.

¹ ANSI Z49.1 is published by the American Welding Society, 550 NW LeJeune Rd, Miami, FL 33126.