Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding
Abstract

Composition and other requirements are specified for more than forty classifications of covered stainless steel welding electrodes. The requirements include general requirements, testing, and packaging. Annex A provides application guidelines and other useful information about the electrodes.

This specification makes use of both U.S. Customary Units and the International System of Units [SI]. Since these are not equivalent, each system must be used independently of the other.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be revised, corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 Doral Blvd., Suite 130, Doral, FL 33166 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
This page is intentionally blank.
Personnel (Reaffirmation)

AWS A5 Committee on Filler Metals and Allied Materials

T. Melfi, Chair The Lincoln Electric Company
R. V. Decker, Vice Chair Weldstar
M. F. Sinfield, 2nd Vice Chair Naval Surface Warfare Center
K. R. Bulger, Secretary American Welding Society
T. Anderson ITW–Miller Electric Manufacturing Company,
A. Boulianne CWB Group
J. C. Bundy Hobart Brothers Company
J. L. Caron Haynes International, Incorporated
G. L. Chouinard Stoody Company (a division of ESAB)
T. J. Eckardt Kiefner and Associates
D. A. Fink The Lincoln Electric Company
R. J. Fox Hobart Brothers LLC
R. D. Fuchs Voestalpine Bohler Welding USA, Inc.
M. James The Lincoln Electric Company
S. D. Kiser Consultant
P. J. Konkol Concurrent Technologies Corporation
D. J. Kotecki Damian Kotecki Welding Consultants
L. G. Kvidahl Consultant
J. S. Lee Chevron
C. McEvoy Consultant
W. C. Mosier Polymet Corporation
T. C. Myers Westec
B. A. Pletcher Bechtel Global Corporation
K. J. Roossinck Ingalls Shipbuilding
K. Sampath Consultant
J. D. Schaefer Aqua-Chem
J. B. Schaeffer The Lincoln Electric Company
F. A. Schweighardt Airgas
W. S. Severance The Lincoln Electric Company
D. Singh Baker Hughes
R. C. Sutherlin Richard Sutherlin PE Consulting LLC
H. D. Wehr Arcos Industries
J. Zhang Ohmstede, Limited

Advisors to the AWS A5 Committee on Filler Metals and Allied Materials

S. E. Ferree Consultant
S. Imaoka Kobe Steel, Limited
S. J. Knostman Hobart Brothers Company
M. T. Merlo Consultant
AWS A5D Subcommittee on Stainless Steel Filler Metals

D. J. Kotecki, Chair Damian Kotecki Welding Consultants
F. B. Lake, Vice Chair Stoody Company (a division of ESAB)
K. R. Bulger, Secretary American Welding Society
R. V. Decker Weldstar
M. Denault ESAB Specialty Alloys
T. J. Eckardt Kieffer and Associates
M. James The Lincoln Electric Company
S. J. Knostman Hobart Brothers Company
W. Koegel R-V Industries, Incorporated
H. D. Wehr Arcos Industries
J. Zawodny Voestalpine Bohler Welding USA, Inc.

Advisors to the AWS A5D Subcommittee on Stainless Steel Filler Metals

A. Boulianne CWB Group
J. Feldstein Foster Wheeler North America
S. Imaoka Kobe Steel, Limited
S. Jana Mailam India Limited
B. Kahut Select-Arc, Incorporated
R. Miller UT-Battelle
J. Ogborn The Lincoln Electric Company
J. Roberts Ingalls Shipbuilding
S. Williams Arcos Industries
Personnel (Original)

AWS A5 Committee on Filler Metals and Allied Materials

H. D. Wehr, Chair Arcos Industries, LLC
J. J. DeLoach Jr., Vice Chair Naval Surface Warfare Center
R. D. Fuchs, 2nd VCH Bohler Welding Group USA, Incorporated
R. K. Gupta, Secretary American Welding Society
T. Anderson Miller Electric Manufacturing Company
J. M. Blackburn Naval Sea Systems Command
J. C. Bundy Hobart Brothers Company
D. D. Crockett Consultant
R. V. Decker Weldstar
D. A. DelSignore Consultant
J. DeVito ESAB Welding & Cutting Products
H. W. Ebert Consulting Welding Engineer
D. M. Fedor The Lincoln Electric Company
J. G. Feldstein Foster Wheeler North America
S. E. Ferree ESAB Welding & Cutting Products
D. A. Fink The Lincoln Electric Company
G. L. Franke Naval Surface Warfare Center
R. M. Henson Harris Products Group
S. D. Kiser Special Metals
P. J. Konkol Concurrent Technologies Corporation
D. J. Kotecki Damian Kotecki Welding Consultants
L. G. Kvidahl Northrop Grumman Shipbuilding
A. Y. Lau Canadian Welding Bureau
J. S. Lee Chevron
T. Melfi The Lincoln Electric Company
K. M. Merlo EWI
M. T. Merlo RevWires LLC
B. Mosier Polymet Corporation
A. K. Mukherjee Siemens Energy Incorporated
T. C. Myers Oceaneering Intervention Engineering
C. L. Null Consultant
B. A. Pletcher CB&I Incorporated
K. C. Pruden Hydril Company
K. Roossinck Northrop Grumman Ship Systems
P. K. Salvesen Det Norske Veritas (DNV)
K. Sampath Consultant
W. S. Severance ESAB Welding and Cutting Products
M. J. Sullivan NASSCO-Natl Steel and Shipbuilding
R. C. Sutherlin ATI Wah Chang
R. A. Swain Euroweld, Limited
K. P. Thornberry Care Medical, Incorporated
M. D. Tumuluru US Steel Corporation
H. J. White HAYNES International
Advisors to the A5 Committee on Filler Metal and Allied Material

R. L. Bateman
J. E. Beckham
R. A. Daemen
C. E. Fuerstenau
J. P. Hunt
S. Imaoka
W. A. Marttila
R. Menon
D. R. Miller
M. P. Parekh
M. A. Quintana
E. S. Surian

Soldaduras West Arco Limitada
Chrysler LLC
Consultant
Lucas-Milhaupt, Incorporated
Special Metals
Kobe Steel Limited
WAMcom Consulting LLC
Stoody Company
ABS Americas Materials Department
Consultant
The Lincoln Electric Company
National University of Lomas de Zamora

AWS A5D Subcommittee on Stainless Steel Filler Metals

D. J. Kotecki, Chair
F. B. Lake, Vice Chair
R. K. Gupta, Secretary
R. E. Cantrell
R. V. Decker
D. A. DelSignore
J. G. Feldstein
R. D. Fuchs
S. R. Jana
S. J. Knostman
G. A. Kurisky
M. T. Merlo
S. J. Merrick
R. A. Swain
J. G. Wallin
H. D. Wehr
J. M. Zawodny

Damian Kotecki Welding Consultants
ESAB Welding & Cutting Products
American Welding Society
Constellation Energy Group
Weldstar
Consultant
Foster Wheeler North America
Bohler Welding Group USA, Incorporated
Select Arc, Incorporated
Hobart Brothers
Consultant
RevWire LLC
Techalloy Welding Products
Euroweld, Limited
Stoody Company
Arcos Industries LLC
Avesta Welding LLC

Advisors to the A5D Subcommittee on Stainless Steel Filler Metals

F. S. Babish
K. K. Gupta
C. H. Herberg
J. P. Hunt
S. Imaoka
I. K. Ishizaki
J. S. Ogborn
Sandvik Materials Technology
Westinghouse Electric Corporation
Alaskan Copper Works
Special Metals
Kobe Steel Limited
Kobelco Welding of America, Incorporated
The Lincoln Electric Company
Foreword

This foreword is not part of AWS A5.4/A5.4M:2012, Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding, but is included for informational purposes only.

This document is the second of the A5.4 specifications which makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore each system must be used independently of the other, without combining values in any way. In selecting rational metric units, the Metric Practice Guide for the Welding Industry (AWS A1.1) and International Standard ISO 544, Welding consumables—Technical delivery conditions for welding filler materials—Type of product, dimensions, tolerances, and marking are used where suitable. Tables and figures make use of both U.S. Customary and SI Units, which with the application of the specified tolerances provides for interchangeability of products in both the U.S. Customary and SI Units.

The Major Changes Incorporated in This Revision Include Updating Clause 6 (Rounding-off Procedure), Adding “Bi” Reporting Requirement, and New Filler Metal Classification E2307-XX. These changes are shown in italic font.

This AWS specification has evolved since the mid 1940s to its present form. The specification for covered stainless steel electrodes, issued in 1946, was prepared by a joint committee of the American Society for Testing and Materials and the American Welding Society. This cooperative effort continued for about 20 years and produced three revisions. The first revision, produced exclusively by the AWS Committee on Filler Metals, was published in 1969.

The current revision represents the tenth revision of the original 1946 document as shown below:

- ASTM A298-46T Tentative Specification for Corrosion-Resisting Chromium and
- AWS A5.4-46T Chromium-Nickel Steel Welding Electrodes
- ASTM A298-48T Tentative Specifications for Corrosion-Resisting Chromium and
- AWS A5.4-48T Chromium-Nickel Steel Welding Electrodes
- ASTM A298-55T Tentative Specifications for Corrosion-Resisting Chromium and
- AWS A5.4-55T Chromium-Nickel Steel Covered Welding Electrodes
- AWS A5.4-62T Tentative Specification for Corrosion-Resisting Chromium and
- ASTM A298-62T Chromium-Nickel Steel Covered Welding Electrodes
- AWS A5.4-69 Specification for Corrosion-Resisting Chromium and Chromium-Nickel Steel Covered Welding Electrodes
- AWS A5.4-Add. 1-75 1975 Addenda to Specification for Corrosion-Resisting Chromium and Chromium-Nickel Steel Covered Welding Electrodes
- AWS A5.4-78 Specification for Corrosion-Resisting Chromium and Chromium-Nickel Steel Covered Welding Electrodes
- ANSI/AWS A5.4-81 Specification for Covered Corrosion-Resisting Chromium and Chromium-Nickel Steel Welding Electrodes
- ANSI/AWS A5.4-92 Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding
- AWS A5.4/A5.4M:2006 Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding

In this reaffirmation, the following editorial changes were made: the American Welding Society’s address was updated; Table A.1 in the List of Tables was modified to match the actual table; The title of Clause 6 was revised to read “Rounding Procedure”; In Figure 2, the “45° ± 5°” angle was revised to read “22.5° ± 2.5°” on both sides; The text “from Cb to Nb” was added to Table 6 note a.

In this reaffirmation, the following errata was incorporated: The “H” symbol in Figure A.1 was changed to the “×” symbol.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, A5 Committee on Filler Metals and Allied Materials, American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
This page is intentionally blank.
Table of Contents

Personnel .. v
Foreword ... ix
Table of Contents ... xi
List of Tables ... xii
List of Figures ... xii

1. **Scope** .. 1
2. **Normative References** 1
3. **Classification** .. 2
4. **Acceptance** ... 2
5. **Certification** ... 2
6. **Rounding Procedure** 5
7. **Summary of Tests** 5
8. **Retest** .. 5
9. **Weld Test Assemblies** 6
10. **Chemical Analysis** 11
11. **Radiographic Test** 11
12. **Tension Test** ... 13
13. **Fillet Weld Test** 13
14. **Method of Manufacture** 14
15. **Standard Sizes and Lengths** 14
16. **Core Wire and Covering** 14
17. **Exposed Core** .. 14
18. **Electrode Identification** 14
19. **Packaging** ... 15
20. **Marking of Packages** 15

Annex A (Informative)—Guide to AWS Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding ... 19
Annex B (Informative)—Requesting an Official Interpretation on an AWS Standard ... 37

AWS Filler Metal Specifications by Material and Welding Process ... 39
AWS Filler Metal Specifications and Related Documents ... 41
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemical Composition Requirements for Undiluted Weld Metal</td>
</tr>
<tr>
<td>2</td>
<td>Type of Welding Current and Position of Welding</td>
</tr>
<tr>
<td>3</td>
<td>Examples of Potentially Occurring Dual Classified Electrodes and Suggested Marking</td>
</tr>
<tr>
<td>4</td>
<td>Tests Required for Classification</td>
</tr>
<tr>
<td>5</td>
<td>Welding Conditions for Preparation of the Groove Weld</td>
</tr>
<tr>
<td>6</td>
<td>All-Weld-Metal Mechanical Property Requirements</td>
</tr>
<tr>
<td>7</td>
<td>Standard Sizes and Lengths</td>
</tr>
<tr>
<td>A.1</td>
<td>Comparison of Classification in ISO 3581:2003</td>
</tr>
<tr>
<td>A.2</td>
<td>Discontinued Classifications</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pad for Chemical Analysis of Undiluted Weld Metal</td>
</tr>
<tr>
<td>2</td>
<td>Groove Weld Assembly for Tension and Radiographic Tests for Electrodes 1/8 in [3.2 mm] Diameter and Larger</td>
</tr>
<tr>
<td>3</td>
<td>Fillet Weld Test Assembly</td>
</tr>
<tr>
<td>4</td>
<td>Fillet Weld Test Specimen</td>
</tr>
<tr>
<td>5A</td>
<td>Rounded Indication Standards for Radiographic Test—1/2 in [12 mm] Plate</td>
</tr>
<tr>
<td>5B</td>
<td>Rounded Indication Standards for Radiographic Test—3/4 in [20 mm] Plate</td>
</tr>
<tr>
<td>A.1</td>
<td>Weld Pad for Ferrite Test</td>
</tr>
<tr>
<td>A.2</td>
<td>Optional Welding Fixture for Welding Ferrite Test Pads</td>
</tr>
<tr>
<td>A.3</td>
<td>WRC-1992 (FN) Diagram for Stainless Steel Weld Metal</td>
</tr>
<tr>
<td>A.4</td>
<td>Orientation and Location of Optional Impact Specimen</td>
</tr>
</tbody>
</table>
Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding

1. Scope

1.1 This specification prescribes requirements for the classification of covered stainless steel electrodes for shielded metal arc welding.¹,²

The chromium content of weld metal deposited by these electrodes is not less than 10.5 percent and the iron content exceeds that of any other element. For purposes of classification, the iron content shall be derived as the balance element when all other elements are considered to be at their minimum specified values.

NOTE: No attempt has been made to classify all grades of filler metals within the limits of the above scope; only the more commonly used grades have been included.

1.2 Safety and health issues and concerns are beyond the scope of this standard and, therefore, are not fully addressed herein. Some safety and health information can be found in Annex Sections A5 and A11. Safety and health information is available from other sources, including, but not limited to ANSI Z49.1, Safety in Welding, Cutting and Allied Processes, and applicable state and federal regulations.

1.3 This specification makes use of both U.S. Customary Units and the International System of Units [SI]. The measurements are not exact equivalents; therefore, each system must be used independently of the other without combining in any way when referring to material properties. The specification with the designation A5.4 uses U.S. Customary Units. The specification A5.4M uses SI Units. The latter are shown in brackets [] or in appropriate columns in tables and figures. Standard dimensions based on either system may be used for sizing of filler metal or packaging or both under A5.4 or A5.4M specifications.

2. Normative References

2.1 The following AWS standards³ are referenced in the mandatory section of this document.

1. AWS A5.01M/A5.01 (ISO 14344 MOD). Procurement Guidelines for Consumables – Welding and Allied Processes – Flux and Gas Shielded Electrical Welding Processes

2. AWS A5.5, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding

3. AWS B4.0, Standard Methods for Mechanical Testing of Welds

4. AWS B4.0M, Standard Methods for Mechanical Testing of Welds

2.2 The following ANSI standard is referenced in the mandatory section of this document:

1. ANSI Z49.1⁴, Safety in Welding, Cutting and Allied Processes

¹ Due to possible differences in composition, core wire from covered electrodes should not be used as bare filler wire.
² Classifications E502, E505, and E7Cr are no longer specified by this document. They are specified in AWS A5.5/A5.5M:2006, designated as follows: E502 as E801X-B6 and E801X-B6L, E505 as E801X-B8 and E801X-B8L, and E7Cr as E801X-B7 and E801X-B7L.
³ AWS standards are published by the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
⁴ ANSI Z49.1 is published by the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.