Specification
for
Filler Metals for Brazing
and Braze Welding

10th Edition

Supersedes AWS A5.8/A5.8M:2004

Prepared by the
American Welding Society (AWS) A5 Committee on Filler Metals and Allied Materials
Under the Direction of the
AWS Technical Activities Committee
Approved by the
AWS Board of Directors

Abstract

This specification prescribes the requirements for the classification of brazing filler metals for brazing and braze welding. The chemical composition, physical form, and packaging of more than 120 brazing filler metals are specified. The brazing filler metal groups described include aluminum, cobalt, copper, gold, magnesium, nickel, silver, titanium, and brazing filler metals for vacuum service. Information is provided concerning the liquidus, the solidus, the brazing temperature range, and general areas of application recommended for each brazing filler metal. Additional requirements are included for manufacture, sizes, lengths, and packaging. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of the brazing filler metals for brazing and braze welding.

This specification makes use of both the International System of Units (SI) and U.S. Customary Units. Since these are not equivalent, each must be used independently of the other.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 Doral Blvd., Suite 130, Doral, FL 33166 (see Annex D). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS A5 Committee on Filler Metals and Allied Materials. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS A5 Committee on Filler Metals and Allied Materials and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS A5 Committee on Filler Metals and Allied Materials to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
Personnel (Amendment)

AWS A5 Committee on Filler Metals and Allied Materials

H. D. Wehr, Chair Arcos Industries LLC
J. J. DeLoach, Jr., 1st Vice Chair Naval Surface Warfare Center
R. D. Fuchs, 2nd Vice Chair Böhler Welding Group USA, Incorporated
R. Gupta, Secretary American Welding Society
T. Anderson IIW Welding North America
J. M. Blackburn Naval Sea Systems Command
J. C. Bundy Hobart Brothers Company
J. L. Caron Haynes International, Incorporated
D. D. Crockett Consultant
R. V. Decker Weldstar
D. A. Del Signore Consultant
J. DeVito Consultant
H. W. Ebert Consultant
D. M. Fedor The Lincoln Electric Company
J. G. Feldstein Foster Wheeler North America
S. E. Ferree ESAB Welding and Cutting Products
D. A. Fink The Lincoln Electric Company
G. L. Franke Naval Surface Warfare Center
R. M. Henson Harris Products Group
S. D. Kiser Special Metals
P. J. Konkol Concurrent Technologies Corporation
D. J. Kotecki Damian Kotecki Welding Consultants
L. G. Kvidahl Ingalls Shipbuilding
A. Y. Lau Canadian Welding Bureau
J. S. Lee Chevron
T. Melfi The Lincoln Electric Company
K. M. Merlo Edison Welding Institute
M. T. Merlo RevWires LLC
B. Mosier Polymet Corporation
A. K. Mukherjee Siemens Power Generation, Incorporated
T. C. Myers Oceaneering Intervention Engineering
C. L. Null Consultant
B. A. Pletcher Select-Arc
K. C. Pruden BP Americas
K. Roosinck Northrop Grumman Ship Systems
P. K. Salvesen Det Norske Veritas (DNV)
K. Sampath Consultant
W. S. Severance ESAB Welding and Cutting Products
M. F. Sinfeld Naval Surface Warfare Center
M. J. Sullivan NASSCO-National Steel and Shipbuilding
R. C. Sutherland ATI Wah Chang
R. A. Swain EuroWeld, Limited
M. D. Tumuluru US Steel Corporation
J. Zhang Indalco Alloys Inc of Lincoln Electric

Advisors to the AWS A5 Committee Filler Metals and Allied Materials

R. L. Bateman Soldaduras West Arco Ltda.
J. E. Beckham Chrysler, LLC
AWS A5H Subcommittee on Filler Metals and Fluxes for Brazing

R. M. Henson, Chair Harris Products Group
G. L. Alexy, Vice-Chair The Prince & Izant Company
S. N. Borrello, Secretary American Welding Society
E. R. Boes Delta Faucet Company
D. Budinger General Electric Aviation
C. F. Darling Lucas-Milhaupt, Incorporated
W. J. Engeron The Engeron Technology Group, Incorporated
T. P. Hirthe Kru-Mar Manufacturing Services, Incorporated
M. J. Lucas Jr. Belcan Engineering
J. C. Madeni Colorado School of Mines
R. McKinney Radyne Corporation
W. Miglietti Power Systems Manufacturing, LLC
C. R. Moyer Bodycote Thermal Processing
T. Oyama WESGO Metals Division
J. P. Sands Wolverine Joining Technologies
M. Scruggs Harris Products Group
A. E. Shapiro Titanium Brazing, Incorporated
C. M. Volpe Senior Aerospace – Metal Bells Division
L. Wolfgram Lucas-Milhaupt, Incorporated

Advisors to the AWS A5H Subcommittee on Filler Metals and Fluxes for Brazing

R. Aluru Progress Energy
P. A. Baskin The Superior Flux & Manufacturing Company
Y. Baskin The Superior Flux & Manufacturing Company
C. E. Fuerstenau Lucas-Milhaupt, Incorporated
D. J. Jossick Lucas-Milhaupt, Incorporated
M. J. Kuta Lucas-Milhaupt, Incorporated

M. L. Caruso Special Metals Welding Products Company
R. A. Daemen Consultant
B. S. Dauble Carpenter Technology Corporation
T. A. Davenport PRL Industries
C. E. Fuerstenau Lucas-Milhaupt, Incorporated
J. P. Hunt Special Metals
S. Imaoka KOBE Steel Limited
S. J. Knostman Hobart Brothers
W. A. Marttila WAMcom Consulting LLC
R. Menon Stoody Company
D. R. Miller ABS Americas
M. P. Parekh Consultant
J. W. Price DMI Industries
M. A. Quintana The Lincoln Electric Company
E. S. Surian National University of Lomas de Zamora
H. J. White Consultant
Personnel (Original)

AWS A5 Committee on Filler Metals and Allied Materials

H. D. Wehr, Chair Arcos Industries LLC
J. J. DeLoach, Jr., 1st Vice Chair Naval Surface Warfare Center
R. D. Fuchs, 2nd Vice Chair Böhler Welding Group USA, Incorporated
R. Gupta, Secretary American Welding Society
T. Anderson Miller Electric Manufacturing Company
J. M. Blackburn Naval Sea Systems Command
J. C. Bundy Hobart Brothers Company
D. D. Crockett Consultant
R. V. Decker Weldstar
D. A. Del Signore Consultant
J. DeVito ESAB Welding and Cutting Products
H. W. Ebert Consultant
D. M. Fedor The Lincoln Electric Company
J. G. Feldstein Foster Wheeler North America
S. E. Ferree ESAB Welding and Cutting Products
D. A. Fink The Lincoln Electric Company
G. L. Franke Naval Surface Warfare Center
R. M. Henson Harris Products Group
S. D. Kiser Special Metals Welding Products Company
P. J. Konkol Concurrent Technologies Corporation
D. J. Kotecki Damian Kotecki Welding Consultants
L. G. Kvidahl Ingalls Shipbuilding
A. Y. Lau Canadian Welding Bureau
J. S. Lee Chevron
T. Melfi The Lincoln Electric Company
K. M. Merlo Edison Welding Institute
M. T. Merlo RevWires LLC
B. Mosier Polymet Corporation
A. K. Mukherjee Siemens Power Generation, Incorporated
T. C. Myers Oceaneering Intervention Engineering
C. L. Null Consultant
B. A. Pletcher CB & I, Incorporated
K. C. Pruden Hydril Company
K. Roossinck Northrop Grumman Ship Systems
P. K. Salvesen Det Norske Veritas (DNV)
K. Sampath Consultant
W. S. Severance ESAB Welding and Cutting Products
M. J. Sullivan NASSCO—National Steel and Shipbuilding Company
R. C. Sutherlin ATI Wah Chang
R. A. Swain Euroweld, Limited
K. P. Thornberry Care Medical, Incorporated
M. D. Tumuluru US Steel Corporation

Advisors to the AWS A5 Committee Filler Metals and Allied Materials

R. L. Bateman Soldaduras West Arco Ltda.
J. E. Beckham Chrysler, LLC
M. L. Caruso Special Metals Welding Products Company
R. A. Daemen Consultant
AWS A5H Subcommittee on Filler Metals and Fluxes for Brazing

R. M. Henson, Chair Harris Products Group
G. L. Alexy, Vice Chair The Prince & Izant Company
S. N. Borrero, Secretary American Welding Society
R. Aluru Chromalloy Gas Turbine Corporation
P. A. Baskin The Superior Flux & Manufacturing Company
Y. Baskin The Superior Flux & Manufacturing Company
E. R. Boes Delta Faucet Company
D. Budinger General Electric Aviation
C. F. Darling Lucas-Milhaupt, Incorporated
W. J. Engeron Engeron Technology Group
T. P. Hirthe Kru-Mar Manufacturing Services, Incorporated
M. J. Lucas Jr. Belcan Corporation
J. C. Madeni Colorado School of Mines
R. McKinney The Prince & Izant Company
W. Miglietti Power Systems Manufacturing, LLC
C. R. Moyer Bodycote Thermal Processing
T. Oyama WESGO Metals
J. P. Sands Wolverine Joining Technologies
M. Scruggs Harris Products Group
A. E. Shapiro Titanium Brazing, Incorporated
C. M. Volpe Senior Aerospace-Metal Bellows Division
L. Wolfgram Lucas-Milhaupt, Incorporated

Advisors to the AWS A5H Subcommittee on Filler Metals and Fluxes for Brazing

C. E. Fuerstenau Lucas-Milhaupt, Incorporated
T. A. Kern Consultant
M. J. Kuta Lucas-Milhaupt, Incorporated
W. D. Rupert Wolverine Joining Technologies
K. P. Thomberry Care Medical, Incorporated
Table of Contents

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>Personnel (Amendment)</td>
</tr>
<tr>
<td>vii</td>
<td>Personnel (Original)</td>
</tr>
<tr>
<td>ix</td>
<td>Foreword</td>
</tr>
<tr>
<td>xii</td>
<td>List of Tables</td>
</tr>
<tr>
<td>xi</td>
<td>List of Figures</td>
</tr>
<tr>
<td>1</td>
<td>1. General Requirements</td>
</tr>
<tr>
<td>1</td>
<td>2. Normative References</td>
</tr>
<tr>
<td>2</td>
<td>3. Classification</td>
</tr>
<tr>
<td>2</td>
<td>4. Acceptance</td>
</tr>
<tr>
<td>3</td>
<td>5. Certification</td>
</tr>
<tr>
<td>3</td>
<td>6. Rounding-Off Procedure</td>
</tr>
<tr>
<td>3</td>
<td>7. Summary of Tests</td>
</tr>
<tr>
<td>3</td>
<td>8. Retest</td>
</tr>
<tr>
<td>3</td>
<td>9. Chemical Analysis</td>
</tr>
<tr>
<td>5</td>
<td>10. Sieve Analysis</td>
</tr>
<tr>
<td>5</td>
<td>11. Melt Cleanliness Test</td>
</tr>
<tr>
<td>6</td>
<td>12. Spatter Test</td>
</tr>
<tr>
<td>12</td>
<td>13. Binder Content of Transfer Tape</td>
</tr>
<tr>
<td>13</td>
<td>14. Method of Manufacture</td>
</tr>
<tr>
<td>13</td>
<td>15. Standard Forms, Sizes, and Tolerances</td>
</tr>
<tr>
<td>13</td>
<td>16. Brazing Filler Metal Identification</td>
</tr>
<tr>
<td>13</td>
<td>17. Packaging</td>
</tr>
<tr>
<td>13</td>
<td>18. Marking of Packages</td>
</tr>
<tr>
<td>21</td>
<td>Annex A (Informative)—Informative References</td>
</tr>
<tr>
<td>23</td>
<td>Annex B (Informative)—Guide to AWS A5.8M/A5.8:2011, Specification for Filler Metals for Brazing and Braze Welding</td>
</tr>
<tr>
<td>41</td>
<td>Annex C (Informative)—Analytical Methods</td>
</tr>
<tr>
<td>43</td>
<td>Annex D (Informative)—Guidelines for the Preparation of Technical Inquiries</td>
</tr>
<tr>
<td>45</td>
<td>AWS Filler Metal Specifications by Material and Welding Process</td>
</tr>
<tr>
<td>47</td>
<td>AWS Filler Metal Specifications and Related Documents</td>
</tr>
<tr>
<td>49</td>
<td>List of AWS Documents on Brazing and Soldering</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemical Composition Requirements for Silver Brazing Filler Metals</td>
</tr>
<tr>
<td>2</td>
<td>Chemical Composition Requirements for Gold Brazing Filler Metals</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Composition Requirements for Aluminum and Magnesium Brazing Filler Metals</td>
</tr>
<tr>
<td>4</td>
<td>Chemical Composition Requirements for Copper, Copper–Zinc, and Copper–Phosphorus Brazing Filler Metals</td>
</tr>
<tr>
<td>5</td>
<td>Chemical Composition Requirements for Nickel and Cobalt Brazing Filler Metals</td>
</tr>
<tr>
<td>6</td>
<td>Chemical Composition Requirements for Titanium and Titanium–Zirconium Brazing Filler Metals</td>
</tr>
<tr>
<td>7</td>
<td>Chemical Composition Requirements for Brazing Filler Metals for Vacuum Service</td>
</tr>
<tr>
<td>8</td>
<td>Powder Mesh Designations and Particle Size Distribution</td>
</tr>
<tr>
<td>9</td>
<td>Standard Forms and Sizes of Brazing Filler Metals</td>
</tr>
<tr>
<td>10</td>
<td>Tolerances for Wrought Wire and Rod</td>
</tr>
<tr>
<td>11</td>
<td>Tolerances for Foil Strip and Sheet</td>
</tr>
<tr>
<td>B.1</td>
<td>Comparison of Classifications with ISO/CD 17672</td>
</tr>
<tr>
<td>B.2</td>
<td>Solidus, Liquidus, and Recommended Brazing Temperature Ranges</td>
</tr>
<tr>
<td>B.3</td>
<td>Discontinued Brazing Filler Metal Classifications</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Illustration of an Acceptable Crucible</td>
</tr>
<tr>
<td>2</td>
<td>Nickel Channel with Acceptable Test Results (right) and Unacceptable Spatter (left)</td>
</tr>
<tr>
<td>B.1</td>
<td>Precautionary Information for Brazing Processes and Equipment</td>
</tr>
<tr>
<td>B.2</td>
<td>Precautionary Information for Brazing Filler Metals Containing Cadmium</td>
</tr>
</tbody>
</table>
1. General Requirements

1.1 Scope. This specification prescribes requirements for the classification of brazing filler metals for brazing and braze welding. It includes brazing filler metals for brazing with or without a flux and in all protective atmospheres for various applications, including those for vacuum service. The prefix “RB” indicates that the brazing filler metal is suitable for use both as brazing rod for braze welding and as a brazing filler metal.

1.2 Units of Measurement. This specification makes use of both the International System of Units (SI) and U.S. Customary Units. The measurements are not exact equivalents; therefore, each system must be used independently of the other without combining in any way when referring to material properties. The specification with the designation A5.8M uses the International System of Units. The specification A5.8 uses U.S. Customary Units. The latter are shown within brackets ([]) or in appropriate columns in tables and figures. Standard dimensions based on either system may be used for the sizing or packaging of brazing filler metal, or both, under A5.8M or A5.8 specifications.

1.3 Safety. Safety issues and concerns are addressed in this standard, although health issues and concerns are beyond the scope of this standard. Some safety and health information can be found in nonmandatory Annex Clauses B5 and B10.

Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes

(2) AWS Safety and Health Fact Sheets (see Annex Clause B10)

(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Material Safety Data Sheets supplied by the materials manufacturers

(2) Operating manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

1 Filler metals for vacuum service are for devices operating in vacuum service, regardless of the atmosphere used in making the joint.