Specification for Fabrication of Metal Components using Additive Manufacturing
Abstract

This specification provides the general requirements for fabrication of metal components using additive manufacturing. It provides guidance for the interaction between the Engineer and the Contractor. It includes the design, qualification, fabrication, inspection, and acceptance of additively manufactured components. A commentary for the specification is included.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards. AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex F). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D20 Committee on Additive Manufacturing. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D20 Committee on Additive Manufacturing and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D20 Committee on Additive Manufacturing to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Foreword

This foreword is not part of this standard but is included for informational purposes only.

The predecessors to additive manufacturing started in the early 1900’s, but control systems that allowed its use for main-
stream manufacturing have only become prevalent in recent years. This qualification and certification standard provides
a structure for manufacturers and their customers to specify high quality components across many industries. Metal addi-
tive manufacturing (AM) systems first started as very small pieces of equipment using lasers and electron beams to make
fine features using expensive to fabricate materials to produce difficult components. More recently, the equipment has
become quite large with the capability to make large structures and has now incorporated the use of many arc welding
processes and common structural materials. The growth in this segment of the welding industry has been fast due to its
ability to make quick changes in designs and its ability to support just-in-time manufacturing methods.

The information contained in this standard was compiled by the American Welding Society’s D20 Committee on Additive
Manufacturing and has been carefully reviewed by a number of experts in the field. It must be noted that any operating
parameters given in this standard will not be the only possible parameter combinations that can be employed for success-
fully processing the materials shown. Changes in material composition, dimensional tolerances, and machine calibration
will cause changes in the resulting products. This is the first revision of the AWS D20.1/D20.1M standard.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS
D20 Committee on Additive Manufacturing, American Welding Society, 8669 NW 36th St., # 130, Doral, FL 33166.
Table of Contents

Personnel .. v
Foreword .. vii
Erratum .. viii
List of Tables ... xi
List of Figures .. xi

1. **General Requirements** ... 1
 1.1 Scope .. 1
 1.2 Units of Measure .. 2
 1.3 Safety ... 2
 1.4 Classification ... 2
 1.5 Responsibilities ... 2

2. **Normative References** ... 3
3. **Terms and Definitions** ... 4
4. **Design Requirements for Additively Manufactured Components** 5
 4.1 Scope .. 5
 4.2 Material Requirements .. 5
 4.3 Witness Specimens for Powder Bed Fusion ... 5
 4.4 Product Definition Data Set Requirements .. 6

5. **Additive Manufacturing Machine and Procedure Qualification** 6
 5.1 General .. 6
 5.2 Qualification Test Builds ... 7
 5.3 Examination and Testing Requirements for Qualification Builds 10
 5.4 Qualification Variables ... 10
 5.5 Additive Manufacturing Procedure Specification Acceptance 10

6. **Additive Manufacturing Machine Operator Performance Qualification** 16
 6.1 General .. 16
 6.2 Levels of Qualification .. 16
 6.3 Qualification Requirements .. 16
 6.4 Maintenance of Qualification .. 17
 6.5 Qualification Expiration .. 17
 6.6 Qualification Records .. 18

7. **Fabrication** .. 18
 7.1 Scope .. 18
 7.2 Digital Control Plan .. 18
 7.3 Additive Manufacturing System ... 18
 7.4 Additive Manufacturing Feedstock and Build Platform 19
 7.5 Preheating and Interpass Temperature Control .. 20
 7.6 Additive Manufacturing Environment .. 20
 7.7 Additive Manufacturing Build .. 20
 7.8 Build Interruptions .. 20
 7.9 In-Process Adjustments and Modifications .. 20
 7.10 Powder Bed Fusion Witness Specimens ... 20
7.11 Component Identification Requirements .. 20
7.12 Acceptance Inspection ... 20
7.13 In-Process Correction ... 20
7.14 Post-AM Processing ... 21
7.15 Record Requirements ... 21

8. Inspection ... 21
 8.1 Qualification of Inspection Personnel ... 21
 8.2 Nondestructive Examinations ... 22
 8.3 Destructive Evaluation .. 23
 8.4 Acceptance Criteria ... 25

Annex A (Informative)—Additive Manufacturing Qualification Records 29
Annex B (Informative)—Informative References ... 59
Annex C (Informative)—Examples of Standard Qualification Build Designs for Powder Bed Fusion ... 63
Annex D (Informative)—Suggested Format for Fabrication Records 65
Annex F (Informative)—Requesting an Official Interpretation on an AWS Standard 73

Commentary on the Specification for Fabrication of Metal Components using Additive Manufacturing ... 75
Foreword .. 77
List of AWS Documents on Additive Manufacturing ... 91
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Additive Manufacturing Processes</td>
</tr>
<tr>
<td>5.1</td>
<td>Inspection and Testing Requirements for Machine and Procedure Qualification</td>
</tr>
<tr>
<td>5.2</td>
<td>Qualification Variables for Powder Bed Fusion Processes</td>
</tr>
<tr>
<td>5.3</td>
<td>Qualification Variables for Directed Energy Deposition Processes</td>
</tr>
<tr>
<td>8.1</td>
<td>RT Sampling Plan Requirements for Class B Production Builds</td>
</tr>
<tr>
<td>8.2</td>
<td>Chemical Analysis Sampling Plan Requirements for Class B Powder Bed Fusion Production Builds</td>
</tr>
<tr>
<td>8.3</td>
<td>Acceptance Criteria in US units (in), T is the shortest dimension between opposing surfaces through the discontinuity</td>
</tr>
<tr>
<td>8.4</td>
<td>Acceptance Criteria in SI units (mm), T is the shortest dimension between opposing surfaces through the discontinuity</td>
</tr>
<tr>
<td>C-7.6</td>
<td>Minimum Requirements on Purities and Moisture Contents of Gases and Gas Mixtures</td>
</tr>
<tr>
<td>C-8.4.3.1(1)</td>
<td>Example k Values as a Function of Number of Specimens</td>
</tr>
<tr>
<td>C-8.4.3.1(2)</td>
<td>Example Dataset of Static Strength Properties</td>
</tr>
<tr>
<td>C-8.4.3.1(3)</td>
<td>Example for a Nonnormal Data Set</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Example of Specimen Arrangement in Vertical and Horizontal Plan Conditions for Directed Energy Deposition Standard Qualification Build</td>
</tr>
<tr>
<td>C.1</td>
<td>Example of Standard Qualification Build Design for Powder Bed Fusion Utilizing As-Build Tension Test Specimens</td>
</tr>
<tr>
<td>C.2</td>
<td>Example of Standard Qualification Build Design for Powder Bed Fusion Showing Think and Thick Walls from which Tension Test Specimens are Machined</td>
</tr>
<tr>
<td>D.1</td>
<td>Planned Build Interruption Record</td>
</tr>
<tr>
<td>D.2</td>
<td>Production Witness Specimen Tension Testing Documentation Form</td>
</tr>
<tr>
<td>D.3</td>
<td>Production Witness Specimen Metallographic Examination Documentation Form</td>
</tr>
<tr>
<td>D.4</td>
<td>In-Process Correction Record</td>
</tr>
</tbody>
</table>
Specification for Fabrication of Metal Components using Additive Manufacturing

1. General Requirements

1.1 Scope. This standard contains the requirements for fabricating metal components by use of additive manufacturing (AM) processes. Annex E provides flowcharts, for information, to assist the user of this standard in following the process for producing AM components in accordance with this document. When this standard is stipulated in contract documents, conformance with all provisions of the standard shall be required, except those provisions that the Engineer (see 1.5.1) or contract documents specifically modify or exempt. Additive manufacturing processes covered include those listed in Table 1.1, using either powder or wire feedstock, as applicable.

<table>
<thead>
<tr>
<th>Process</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Powder Bed Fusion</td>
<td>L-PBF</td>
</tr>
<tr>
<td>Electron Beam Powder Bed Fusion</td>
<td>EB-PBF</td>
</tr>
<tr>
<td>Laser Directed Energy Deposition</td>
<td>L-DED</td>
</tr>
<tr>
<td>Electron Beam Directed Energy Deposition</td>
<td>EB-DED</td>
</tr>
<tr>
<td>Plasma Arc Directed Energy Deposition</td>
<td>PA-DED</td>
</tr>
<tr>
<td>Gas Tungsten Arc Directed Energy Deposition</td>
<td>GTA-DED</td>
</tr>
<tr>
<td>Gas Metal Arc Directed Energy Deposition</td>
<td>GMA-DED</td>
</tr>
</tbody>
</table>

The following is a summary of the standard clauses:

Clause 1. General Requirements: Basic information on the scope and requirements of this standard.

Clause 2. Normative References: A listing of the documents that are required for the application of this standard.

Clause 3. Terms and Definitions: A list of technical terms and definitions required for the application of this standard.

Clause 4. Design of Additively Manufactured Components: Requirements for the design of additively manufactured components.

Clause 7. Fabrication: Requirements for fabricating additively manufactured components.

Clause 8. Inspection: Requirements for the qualification of inspection personnel. Nondestructive and destructive examination requirements and acceptance criteria for qualification and production builds.