Standard Methods for Mechanical Testing of Welds

8th Edition

Supersedes AWS B4.0:2007

Prepared by the AWS Committee on B4 Committee on Mechanical Testing of Welds

Under the Direction of the AWS Technical Activities Committee

Approved by the AWS Board of Directors

Abstract

Mechanical test methods that are applicable to welds and welded joints are described. For each testing method, information is provided concerning applicable American National Standards Institute (ANSI), American Society for Testing and Materials (ASTM), and American Petroleum Institute (API) documents; the required testing apparatus, specimen preparation, procedure to be followed, and report requirements are also described.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so. Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS B4 Committee on Mechanical Testing of Welds. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the B4 Committee on Mechanical Testing of Welds and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS B4 Committee on Mechanical Testing of Welds to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.

iii
This page is intentionally blank.
Personnel (Amendment)

AWS Committee on Mechanical Testing of Welds

P. S. Lester, Chair
J. A. Grantham, Vice Chair
S. P. Hedrick, Secretary
D. A. Fink
J. W. Sowards
L. Van Leaven
R. F. Waite

AZZ WSI
Welding & Joining Management Group
American Welding Society
The Lincoln Electric Company
NIST Boulder
Consultant
Consultant

Advisors to the AWS Committee on Mechanical Testing of Welds

J. J. DeLoach, Jr
E. L. Lavy
L. Li
J. A. Major
T. McGaughy
K. M. Merlo-Joseph
H. W. Mishler
G. R. Pearson
A. G. Portz
J. H. Smith
W. W. StCyr II
R. J. Wong
K. Zerkle

Naval Surface Warfare Center
Consultant
University of Alberta
The Lincoln Electric Company
Edison Welding Institute
Apeks Supercritical
Consultant
Anderson Laboratories
Consultant
Consultant
Consultant
Consultant
Naval Surface Warfare Center
Consultant
Personnel (Original)

AWS Committee on Mechanical Testing of Welds

L. Van Leaven, Chair Consultant
P. S. Lester, Vice Chair AZZ WSI
S. P. Hedrick, Secretary American Welding Society
J. R. Crisci Consultant
D. A. Fink The Lincoln Electric Company
J. A. Grantham Welding & Joining Management Group
J. W. Sowards NIST Boulder
R. F. Waite Consultant

Advisors to the AWS Committee on Mechanical Testing of Welds

J. J. DeLoach, Jr Naval Surface Warfare Center
E. L. Lavy Consultant
L. Li University of Alberta
J. A. Major The Lincoln Electric Company
T. McGaughy Edison Welding Institute
K. M. Merlo-Joseph Apeks Supercritical
H. W. Mishler Consultant
G. R. Pearson Anderson Laboratories
A. G. Portz Consultant
J. H. Smith Consultant
W. W. StCyr II Consultant
R. J. Wong Naval Surface Warfare Center
K. Zerkle Consultant
Foreword

This foreword is not part of this standard but is included for informational purposes only.

This standard covers the common tests for the mechanical testing of welds. They are defined and illustrated in sections related to tension tests, shear tests, bend tests, fracture toughness tests, hardness tests, break tests (nick and fillet welds), selected weldability tests and process specific tests (stud weld tests and resistance weld tests).

This document extensively references American Society for Testing and Materials (ASTM) Standard Methods and specifies how to use these methods when testing weldments. It takes into consideration the variations in properties that can occur between different regions (base metal, heat-affected zone, and weld metal) of a weldment.

Methods of hardness testing and mechanical property tests for base metals are covered by ASTM standards or the individual material specification. The joint tests for brazements are covered in AWS C3.2M/C3.2, Standard Methods for Evaluating the Strength of Brazed Joints. Additional information on the mechanical testing of welded joints may be obtained from the AWS Welding Handbook, Ninth Edition, Volume 1, which describes selected weldability test methods.

AWS B4.0:2016, Standard Methods for the Mechanical Testing of Welds, is the eighth edition of the document initially published in 1942. The second edition (1974) incorporated metric conversions and the third edition (1977) incorporated minor changes. The fourth edition (1985) added the plane-strain fracture toughness test and the fifth edition (1992) added hardness testing and stud weld tests, and organized the tests by weld type. The sixth edition (1998) added six new weldability tests. The seventh edition included three new weldability tests (WIC, trough, and GBOP) and resistance weld tests. The current edition includes two new annexes (C and D) which address tensile testing of narrow groove welds. Several figures were updated and changes in text are indicated by a vertical margin line. Previous editions of the document are as follows:

AWS A4.0-42, Standard Methods for Mechanical Testing of Welds
AWS B4.0-74, Standard Methods for Mechanical Testing of Welds
AWS B4.0-77, Standard Methods for Mechanical Testing of Welds
AWS B4.0-85, Standard Methods for Mechanical Testing of Welds
AWS B4.0-92, Standard Methods for Mechanical Testing of Welds
AWS B4.0-98, Standard Methods for Mechanical Testing of Welds
AWS B4.0:2007, Standard Methods for Mechanical Testing of Welds

Comments and suggestions for the improvement of this standard are welcome. The should be sent to the Secretary, Committee on Standard Methods for Mechanical Testing of Welds, American Welding Society, 8669 NW 36 St, Miami, FL 33166.
Amendments

The following Amendments have been identified and incorporated in this reprint.

AWS Standard: B4.0:2016
Amendment Number: 1
Subject: Clause 7.2, replace reference ASTM A370 with ASTM E23:

ASTM Documents:

ASTM E208, Standard Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels
ASTM E1823, Standard Terminology Relating to Fatigue and Fracture Testing

AWS Standard: B4.0:2016
Amendment Number: 1
Subject: Clause 7.5.1, replace “ASTM A370” with “ASTM E23”:

7.5.1 The apparatus for conducting the various fracture toughness tests shall be in accordance with the latest edition of the following ISO and ASTM Standard Test Methods:

(1) Charpy V-notch, ASTM E23;

AWS Standard: B4.0:2016
Amendment Number: 1
Subject: Clause 7.7.1, replace “ASTM A370” with “ASTM E23”:

7.7.1 Test specimen preparation and test procedure for measuring the fracture toughness of a weldment shall be in accordance with the following ISO and ASTM standard test methods:

(1) Charpy V-notch, ASTM E23, except that values up to and including 100% of the testing machine capacity shall be accepted and reported as fracture energy if the specimen breaks. The full machine capacity followed by a plus sign (+), shall be reported if the specimen is not broken. All these results may be used to calculate the average energy absorbed provided the minimum average required for acceptance is within the verified range of the machine;
NOTE—Dimensional Tolerances shall be as follows:

- Notch length to edge: 90° ± 2°
- Adjacent sides shall be at 90° ± 10 minutes
- Cross section dimensions: ±0.003 in (0.076 mm)
- Length of specimen (L): +0, –0.100 in (+0, –2.5 mm)
- Centering of notch (L/2): ±0.039 in (1 mm)
- Angle of notch: ±1°
- Radius of notch: ±0.001 in (0.025 mm)
- Finish requirements: 63 microinches (1.5 micrometers) Rₚ on notched surface and opposite face; 125 microinches (3 micrometers) Rₚ on other two surfaces
- Ligament length: ±0.001 in (0.025 mm)

Figure 7.1—Charpy V-Notch Impact Specimen
This page is intentionally blank.
Table of Contents

Personnel .. v
Foreword .. vii
List of Tables .. xiii
List of Figures ... xiii

1. **Scope** ... 1
2. **Normative References** ... 2
3. **Terms and Definitions** .. 2
4. **Tension Tests** .. 2
 4.1 Scope ... 2
 4.2 Normative References ... 2
 4.3 Nomenclature ... 3
 4.4 Summary of Methods ... 3
 4.5 Significance .. 3
 4.6 Apparatus ... 3
 4.7 Specimens .. 3
 4.8 Procedure .. 4
 4.9 Report ... 6
 4.10 Commentary ... 6
5. **Shear Tests** ... 13
 5.1 Scope ... 13
 5.2 Normative References .. 13
 5.3 Summary of Method .. 13
 5.4 Significance .. 13
 5.5 Apparatus .. 13
 5.6 Specimens .. 13
 5.7 Procedure .. 14
 5.8 Report ... 14
 5.9 Commentary ... 14
6. **Bend Tests** ... 17
 6.1 Scope ... 17
 6.2 Normative References .. 17
 6.3 Nomenclature ... 17
 6.4 Summary of Method .. 17
 6.5 Significance .. 17
 6.6 Apparatus .. 17
 6.7 Specimens .. 18
 6.8 Procedure .. 19
 6.9 Report ... 20
 6.10 Commentary ... 20
7. **Fracture and Notch Toughness Tests** 32
 7.1 Scope ... 32
 7.2 Normative References .. 32
7.3 Summary of Method ... 33
7.4 Significance ... 33
7.5 Apparatus .. 33
7.6 Specimens .. 33
7.7 Procedure .. 33
7.8 Report .. 34

8. Hardness Tests .. 41
8.1 Scope .. 41
8.2 Normative References ... 41
8.3 Summary of Method ... 41
8.4 Significance .. 41
8.5 Apparatus .. 41
8.6 Specimens .. 42
8.7 Procedure .. 42
8.8 Report .. 42
8.9 Commentary .. 42

9. Break Tests (Nick and Fillet Weld) .. 45
9.1 Nick Break Test .. 45
9.2 Fillet Weld Break Test ... 55

10. Weldability Testing ... 60
10.1 Controlled Thermal Severity (CTS) Test 61
10.2 Cruciform Test ... 68
10.3 Implant Test .. 76
10.4 Lehigh Restraint Test .. 82
10.5 Varestraint Test ... 86
10.6 Oblique Y-Groove Test .. 92
10.7 Welding Institute of Canada (WIC) Test 99
10.8 Trough Test ... 104
10.9 Gapped Bead on Plate (GBOP) Test 109

11. Process Specific Tests ... 111
11.1 Stud Weld Test ... 111
11.2 Resistance Welding Test .. 114

Annex A (Informative)—Bibliography ... 141
Annex B (Informative)—Requesting an Official Interpretation on an AWS Standard .. 143
Annex C (Informative)—Recommended Practice for All-Weld-Metal Tensile Testing Of Narrow Groove Welds .. 145
Annex D (Informative)—Recommended Practice for All-Weld-Metal Tensile Testing Of Narrow Groove Pipeline Girth Welds ... 155
List of AWS Documents of the Mechanical Testing of Welding ... 167
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>Tension Test Specimen Dimensions</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension Tests</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Round Tensile Specimens</td>
</tr>
<tr>
<td>4.2</td>
<td>Transverse Rectangular Tension Test Specimen (Plate)</td>
</tr>
<tr>
<td>4.3</td>
<td>Longitudinal Tension Test Specimens (Plates)</td>
</tr>
<tr>
<td>4.4</td>
<td>Reduced Rectangular Section Tension Specimens for Pipe</td>
</tr>
<tr>
<td>4.5</td>
<td>Full Section Tension Specimen for Pipe</td>
</tr>
<tr>
<td>Fillet Weld Shear Tests</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Longitudinal Fillet Weld Shear Specimen</td>
</tr>
<tr>
<td>5.2</td>
<td>Transverse Filet Weld Shear Specimen</td>
</tr>
<tr>
<td>5.3</td>
<td>Shear Strength Calculation</td>
</tr>
<tr>
<td>Bend Tests</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Typical Bottom Ejecting Guided Bend Test Fixture</td>
</tr>
<tr>
<td>6.2</td>
<td>Typical Bottom Guided Bend Test Fixture</td>
</tr>
<tr>
<td>6.3</td>
<td>Typical Wraparound Guided Bend Test Fixture</td>
</tr>
<tr>
<td>6.4</td>
<td>Transverse Side Bend Specimens (Plate and Pipe)</td>
</tr>
<tr>
<td>6.5</td>
<td>Transverse Face Bend and Root Bend Specimen (Plate)</td>
</tr>
<tr>
<td>6.6</td>
<td>Transverse Face Bend and Root Bend Specimens (Pipe)</td>
</tr>
<tr>
<td>6.7</td>
<td>Longitudinal Face Bend and Root Bend Specimens (Plate)</td>
</tr>
<tr>
<td>6.8</td>
<td>Fillet Weld Root Bend Test Specimen</td>
</tr>
<tr>
<td>6.9</td>
<td>Surfacing Weld Face Bend and Side Bend Specimen</td>
</tr>
<tr>
<td>6.10</td>
<td>Longitudinal Guided Fillet Weld Bend Test</td>
</tr>
<tr>
<td>6.11</td>
<td>Bend Test Nomograph</td>
</tr>
<tr>
<td>Fracture and Notch Toughness Tests</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Charpy (Simple-Beam) Impact Test Specimens V-Notch and U-Notch</td>
</tr>
<tr>
<td>7.2</td>
<td>Dynamic Tear Test Specimen, Anvil Supports, and Striker</td>
</tr>
<tr>
<td>7.3</td>
<td>Compact Tension Fracture Toughness Specimen</td>
</tr>
<tr>
<td>7.4</td>
<td>Standard Drop Weight Nil-Ductility Temperature Test Specimen</td>
</tr>
<tr>
<td>7.5</td>
<td>Orientation of Weld Metal Fracture Toughness Specimens in a Double-Groove Weld Thick Section Weldment</td>
</tr>
<tr>
<td>7.6</td>
<td>Crack Plane Orientation Code for Compact Tension Specimens from Welded Plate</td>
</tr>
<tr>
<td>7.7</td>
<td>Recommended Ratio of Weld Metal to Specimen Thickness for Weld-Metal Fracture Toughness Specimen (Compact Tension Specimen)</td>
</tr>
</tbody>
</table>
Hardness Tests

8.1 Example Butt Weld Hardness Testing Locations ... 43
8.2 Example Fillet Weld Hardness Testing Locations ... 44

Nick-Break Tests

9.1.1 Nick-Break Testing Fixture Made Out of 6 in (152 mm) Pipe 48
9.1.2 Nick-Break Test Using Vise ... 49
9.1.3 Nick-Break Test Using Anvil ... 49
9.1.4 Nick-Break Test Specimen ... 50
9.1.5 Specimen for Flash Butt Welds .. 51
9.1.6 Specimens for Nick-Break Test of Branch Joint Connections 52
9.1.7 Pipe Sleeve Test Specimen .. 53
9.1.8 Fillet Welded Plate Specimens .. 54

Fillet Weld Break Tests

9.2.1 Fillet Weld Break Specimen for Procedure Qualification 57
9.2.2 Fillet Weld Break Specimen for Primer Coated Materials 57
9.2.3 Fillet Weld Break Specimen for Galvanized Materials 58
9.2.4 Fillet Weld Break Specimen for Welder Qualification 58
9.2.5 Fillet Weld Break Specimen for Tack Welder Qualification 59
9.2.6 Method of Testing Fillet Weld Break Specimen .. 59

Weldability Testing

Controlled Thermal Severity (CTS) Test

10.1.1 Fixture Used to Position CTS Specimen for Welding 63
10.1.2 CTS Test Specimen ... 64
10.1.3 Cooling Bath Arrangement for CTS Test ... 65
10.1.4 Sectioning of CTS Specimen ... 66
10.1.5 Typical Locations of Microhardness Impressions for this Optional Test on CTS Specimens ... 66
10.1.6 Suggested Data Sheet for CTS Test .. 67

Cruciform Test

10.2.1 Cruciform Test Assembly ... 71
10.2.2 Locations of Specimens for Examination of Cracks in Cruciform Test 72
10.2.3 Schematic Illustration of the Attached Plate in the Slotted Cruciform Specimen .. 72
10.2.4 Sectioning for the Longitudinal Notch .. 73
10.2.5 Sectioning for the Transverse Notch .. 73
10.2.6 Location of Metallographic Specimens for Examination of Cracks in the Slotted Cruciform Test ... 74
10.2.7 Suggested Data Sheet for Cruciform Test .. 75

Implant Test

10.3.1 Implant Test Specimen and Fixture .. 79
10.3.2 Typical Data for Implant Test Series .. 80
10.3.3 Suggested Data Sheet for Implant Test ... 81

Lehigh Restraint Test

10.4.1 Lehigh Restraint Weld-Metal Cracking Test Specimen 84
10.4.2 Suggested Data Sheet for Lehigh Test .. 85

Varestraint Test

10.5.1 Varestraint Test Fixture and Specimen ... 89
10.5.2 Auxiliary Bending Plates .. 90
10.5.3 Typical Indications on Top Surface of Test Weld ... 90
10.5.4 Suggested Data Sheet for Varestraint Test .. 91

Oblique Y-Groove Test

10.6.1 Oblique Y-Groove Test Assembly ... 95
10.6.2 Oblique Y-Groove Test Weld Configuration .. 96
10.6.3 Suggested Data Sheet for Oblique Y-Groove Test .. 98
Welding Institute of Canada (WIC) Test

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7.1</td>
<td>Schematic Illustration of the WIC Test Assembly</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Illustration of the Straight Y Joint Design for the WIC Specimen</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Illustration of the Oblique Y Joint Design for the WIC Specimen</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Suggested Data Sheet for WIC Test</td>
</tr>
</tbody>
</table>

Trough Test

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8.1</td>
<td>Trough Test Specimen</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Location of Weld Starts, Stops, and Tension Test Specimens (Side View)</td>
</tr>
<tr>
<td>10.8.3</td>
<td>Suggested Data Sheet for Trough Test</td>
</tr>
</tbody>
</table>

Gapped Bead On Plate (GBOP) Test

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9.1</td>
<td>Specimen Dimensions and Test Set-Up</td>
</tr>
</tbody>
</table>

Stud Weld Tests

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1</td>
<td>Equipment for Bend Tests for Welded Studs</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Equipment for Applying a Tensile Load to a Welded Stud Using Torque</td>
</tr>
</tbody>
</table>

Resistance Weld Tests

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1</td>
<td>Peel Test Specimen</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Peel Test</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Measurement of a Weld Button Resulting from the Peel Test</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Bend Test Specimen</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Spot Weld Chisel Test</td>
</tr>
<tr>
<td>11.2.6</td>
<td>Specimen for Tension Shear Test and Tension Shear Impact Test</td>
</tr>
<tr>
<td>11.2.7</td>
<td>Twisting Angle (y at Fracture in Tension Shear Test)</td>
</tr>
<tr>
<td>11.2.8</td>
<td>Cross-Tension Test Specimens</td>
</tr>
<tr>
<td>11.2.9</td>
<td>Fixture for Cross-Tension Test [for Thicknesses up to 0.19 in (4.8 mm)]</td>
</tr>
<tr>
<td>11.2.10</td>
<td>Fixture for Cross-Tension Test [for Thicknesses 0.19 in (4.8 mm) and Over]</td>
</tr>
<tr>
<td>11.2.11</td>
<td>Specimen for U Specimen Tension Test and U Specimen Impact Test</td>
</tr>
<tr>
<td>11.2.12</td>
<td>U-Tension Test Jig</td>
</tr>
<tr>
<td>11.2.13</td>
<td>Pull Test (90° Peel Test)</td>
</tr>
<tr>
<td>11.2.14</td>
<td>Test Specimen and Typical Equipment for Torsion-Shear Test</td>
</tr>
<tr>
<td>11.2.15</td>
<td>Drop-Impact Test Specimen</td>
</tr>
<tr>
<td>11.2.16</td>
<td>Drop-Impact Test Machine</td>
</tr>
<tr>
<td>11.2.17</td>
<td>Test Fixture for Shear-Impact Loading Test</td>
</tr>
<tr>
<td>11.2.18</td>
<td>Test Fixture for Torsion-Impact Loading Test</td>
</tr>
<tr>
<td>11.2.19</td>
<td>Fatigue Testing Machine</td>
</tr>
<tr>
<td>11.2.20</td>
<td>Pillow Test for Seam Welds</td>
</tr>
<tr>
<td>11.2.21</td>
<td>Suggested Data Sheet for Resistance Spot and Projection Welding</td>
</tr>
<tr>
<td>11.2.22</td>
<td>Suggested Data Sheet for Resistance Seam Welding</td>
</tr>
</tbody>
</table>

All-Weld-Metal Tensile Testing of Narrow Groove Welds

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Tensile Specimen Location in Narrow Groove Weld Cross Section</td>
</tr>
<tr>
<td>C.2</td>
<td>Typical Narrow Groove Weld Joints</td>
</tr>
<tr>
<td>C.3</td>
<td>AWM Strip Tensile Blank</td>
</tr>
<tr>
<td>C.4</td>
<td>Preparation of AWM Strip Tensile Blank</td>
</tr>
<tr>
<td>C.5</td>
<td>Photographs of Blanks Etched with 3%–5% Nital</td>
</tr>
<tr>
<td>C.6</td>
<td>Measurement of Weld Width for Determination of Specimen Width</td>
</tr>
<tr>
<td>C.7</td>
<td>AWM Strip Tensile Specimen Dimensional Requirements</td>
</tr>
<tr>
<td>C.8</td>
<td>AWM Strip Tensile Specimen Prior to Test</td>
</tr>
<tr>
<td>C.9</td>
<td>AWM Strip Tensile Test</td>
</tr>
</tbody>
</table>

All-Weld-Metal Tensile Testing of Narrow Groove Pipeline Girth Welds

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>Tensile Specimen Location in Narrow Groove Weld Cross Section</td>
</tr>
<tr>
<td>D.2</td>
<td>Typical Narrow Groove Weld Joints</td>
</tr>
<tr>
<td>D.3</td>
<td>Schematic Diagram of AWM Strip Tensile Blank</td>
</tr>
<tr>
<td>D.4</td>
<td>AWM Strip Tensile Blank</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>D.5</td>
<td>Preparation of AWM Strip Tensile Blank.</td>
</tr>
<tr>
<td>D.6</td>
<td>Photographs of Blanks Etched with 3%–5% Nital</td>
</tr>
<tr>
<td>D.7</td>
<td>Measurement of Weld Width for Determination of Specimen Width</td>
</tr>
<tr>
<td>D.8</td>
<td>AWM Strip Tensile Specimen Dimensional Requirements</td>
</tr>
<tr>
<td>D.9</td>
<td>AWM Strip Tensile Specimen Prior to Test</td>
</tr>
<tr>
<td>D.10</td>
<td>AWM Strip Tensile Test</td>
</tr>
</tbody>
</table>
Standard Methods for Mechanical Testing of Welds

1. Scope

This specification establishes standard methods for mechanical testing of welds. The significance of each test, test apparatus, preparation of the test specimens, and the test procedure are described. Example test results sheets are provided.

It is beyond the scope of this document to define the required mechanical properties or acceptance criteria for the weld metal.

This standard makes sole use of U.S. Customary Units. Approximate mathematical equivalents in the International System of Units (SI) are provided for comparison in parentheses or in appropriate columns in tables and figures.

Safety and health issues and concerns are beyond the scope of this standard and therefore are not addressed herein. Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
(2) AWS Safety and Health Fact Sheets
(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Safety Data Sheets supplied by materials manufacturers
(2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

2. Normative References

The following standards contain provisions which, through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

AWS documents:

AWS A1.1, Metric Practice Guide for the Welding Industry;
AWS A2.4, Standard Symbols for Welding, Brazing and Nondestructive Examination; and