Photocopy Rights. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, including mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

Authorization to photocopy items for internal, personal, or educational classroom use only or the internal, personal, or educational classroom use only of specific clients is granted by the American Welding Society provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; tel: (978) 750-8400; Internet: <www.copyright.com>.

The information and data presented in the *Brazing Handbook* are intended for informational purposes only. Reasonable care is exercised in the compilation and publication of the *Brazing Handbook* to ensure the authenticity of the contents. However, no representation is made as to the accuracy, reliability, or completeness of this information, and an independent, substantiating investigation of the information should be undertaken by the user.

The information contained in the *Brazing Handbook* shall not be construed as a grant of any right of manufacture, sale, use, or reproduction in connection with any method, process, apparatus, product, composition, or system, which is covered by patent, copyright, or trademark. Also, it shall not be construed as a defense against any liability for such infringement. Whether the use of any information in the *Brazing Handbook* would result in an infringement of any patent, copyright, or trademark is a determination to be made by the user.
Dedications

Robert L. Peaslee—“Mr. Brazing”

Mr. Bob Peaslee is recognized for his tireless effort and generous contributions in making this new edition not only possible but technically sound. Bob questioned every person and paragraph written to ensure the technical accuracy of its content. The legacy of Mr. Peaslee and his “fingerprints” are found throughout the book. This handbook has been instrumental in transferring his years of experience and knowledge into a practical experience for all of us.

Cynthia L. Jenney

This edition of the *Brazing Handbook* is dedicated to the memory of Cynthia Jenney in recognition of her tireless efforts on this project. Cynthia took this book to heart. Besides her duties as committee secretary, Cynthia coordinated the chapter contributions as well as provided valuable suggestions and encouragement to the individual authors. She put in countless hours editing the text as well as organizing the artwork that came from numerous sources around the country. The C3 committee will be forever grateful to Cynthia for all of her hard work on the handbook, for serving as a wonderful secretary, and for simply being a very dear friend to all of our committee members.

John J. Stephens

This handbook is also dedicated to the memory of C3 committee member John J. Stephens, Ph.D., of Sandia National Laboratories (Albuquerque, NM) who passed away during its completion. John was a world-recognized leader in the areas of metal-ceramic brazing and filler metal properties. He freely offered his expertise, not only through his contributions to this handbook, but also in the many efforts undertaken by the committee. John’s upbeat attitude and willingness to help provided an inspiration to everyone in this industry who had the opportunity to work with him.
Personnel

AWS C3 Committee on Brazing and Soldering

P. T. Vianco, Chair Sandia National Laboratories
R. W. Smith, Vice Chair Materials Resources International
S. N. Borrero, Secretary American Welding Society
G. L. Alexy The Prince & Izant Company
R. Aluru Chromalloy Gas Turbine Corporation
B. Barten Delphi Thermal & Interior
D. W. Buchholz Conforma Clad, Incorporated
D. E. Budinger General Electric Aviation
C. F. Darling Lucas-Milhaupt, Incorporated
W. J. Engeron EAS Training & Consulting Services
S. L. Feldbauer Abbott Furnace Company
Y. Flom NASA Goddard Space Flight Center
D. Fortuna Sulzer Metco (U.S.), Incorporated
Y. P. Gao Pratt & Whitney Rocketdyne
R. A. Gross Gourley Curtiss-Wright
S. R. Hazelbaker The Prince & Izant Company
T. P. Hirthe Kru-Mar Manufacturing Services, Incorporated
F. M. Hosking Sandia National Laboratories
J. R. Jachna Modine Manufacturing Company
D. A. Javernick Los Alamos National Laboratory
D. Kane ADB Industries
G. F. Kayser Pratt & Whitney Rocketdyne
M. J. Kuta Lucas-Milhaupt, Incorporated
E. Liguori Scarrott Metallurgical
M. J. Lucas, Jr. General Electric Aviation
R. P. McKinney The Prince & Izant Company
C. R. Moyer Bodycote Thermal Processing
T. Oyama WESGO Metals
C. A. Paponetti, Sr. Expert Brazing & Heat Treating, Incorporated
R. L. Peaslee Wall Colmonoy Corporation
A. Rabinkin Metglas, Incorporated/Hitachi Metals
A. E. Shapiro Titanium Brazing, Incorporated
C. Walker Sandia National Laboratories

Advisors to the C3 Committee on Brazing and Soldering

A. Belohlav Lucas-Milhaupt, Incorporated
S. S. Bhargava General Motors
S. Christy Pratt and Whitney
N. C. Cole NCC Engineering
C. E. Fuerstenau Lucas-Milhaupt, Incorporated
P. K. Gupta Honeywell Aerospace
M. J. Higgins Pratt and Whitney
Advisors to the C3 Committee on Brazing and Soldering (Continued)

H. Lichtenberger Williams Advanced Materials
E. Lugscheider Aachen University of Technology
W. D. Rupert Wolverine Joining Technologies

AWS C3A Subcommittee on the Brazing Handbook

C. A. Paponetti, Chair Expert Brazing & Heat Treating
E. Liguori, Vice Chair Scarrott Metallurgical
S. N. Borrero, Secretary American Welding Society
G. L. Alexy The Prince & Izant Company
R. Aluru Chromalloy Gas Turbine Corporation
D. W. Bucholz Conformal Clad, Incorporated
D. E. Budinger General Electric Aviation
W. J. Engeron EAS Training & Consulting Services
S. L. Feldbauer Abbott Furnace Company
Y. Flom NASA Goddard Space Flight Center
C. E. Fuerstenau Lucas-Milhaupt, Incorporated
S. R. Hazelbaker The Prince & Izant Company
T. P. Hirthe Kru-Mar Manufacturing Services, Incorporated
C. H. Holwerk Conformal Clad, Incorporated
F. M. Hosking Sandia National Laboratories
J. R. Jachna Modine Manufacturing Company
G. F. Kayser Pratt & Whitney Rocketdyne
M. J. Kuta Lucas-Milhaupt, Incorporated
M. J. Lucas, Jr. General Electric Aviation
T. Oyama WESGO Metals
R. L. Peaslee Wall Colmonoy Corporation
A. Rabinkin Metglas, Incorporated/Hitachi Metals
A. E. Shapiro Titanium Brazing, Incorporated
R. W. Smith Materials Resources International
P. T. Vianco Sandia National Laboratories
C. M. Volpe Wolverine Joining Technologies
C. Walker Sandia National Laboratories

Advisors to the C3A Subcommittee on the Brazing Handbook

B. Barten Delphi Thermal & Interior
A. Belohlav Lucas-Milhaupt, Incorporated
S. S. Bhargava General Motors
N. C. Cole NCC Engineering
P. K. Gupta Honeywell Aerospace
M. J. Higgins Pratt and Whitney
T. A. Kern Consultant
H. H. Lang York International Corporation
H. Lichtenberger Williams Advanced Materials
W. D. Rupert Wolverine Joining Technologies
A. Severin Bradley Corporation
R. W. Walls Walls Engineering
AWS C3B Subcommittee on Soldering

F. M. Hosking, Chair Sandia National Laboratories
S. N. Borrero, Secretary American Welding Society
 R. Aluru Chromalloy Gas Turbine Corporation
 C. F. Darling Lucas-Milhaupt, Incorporated
 A. Rabinkin Metglas, Incorporated/Hitachi Metals
 J. P. Sands Wolverine Joining Technologies
 A. E. Shapiro Titanium Brazing, Incorporated
 R. W. Smith Materials Resources International
 P. T. Vianco Sandia National Laboratories
 C. M. Volpe Wolverine Joining Technologies
 C. Walker Sandia National Laboratories

Advisors to the C3B Subcommittee on Soldering

 N. C. Cole NCC Engineering
 C. E. Fuerstenau Lucas-Milhaupt, Incorporated
 P. K. Gupta Honeywell Aerospace
 T. P. Hirthe Kru-Mar Manufacturing Services, Incorporated
 M. J. Lucas, Jr. General Electric Aviation

AWS C3C Subcommittee on Education and Safety

G. L. Alexy, Chair The Prince & Izant Company
S. N. Borrero American Welding Society
 R. Aluru Chromalloy Gas Turbine Corporation
 C. F. Darling Lucas-Milhaupt, Incorporated
 W. J. Engeron EAS Training & Consulting Services
 D. Fortuna Sulzer Metco (US), Incorporated
 T. P. Hirthe Kru-Mar Manufacturing Services, Incorporated
 D. J. Jawernick Los Alamos National Laboratory
 M. J. Lucas, Jr. General Electric Aviation
 R. P. McKinney The Prince & Izant Company
 R. L. Peaslee Wall Colmonoy Corporation
 J. P. Sands Wolverine Joining Technologies
 C. Wohlmuth Consultant

Advisors to the C3C Subcommittee on Education and Safety

 A. B. Cedilote WABCO
 N. C. Cole NCC Engineering
 V. R. Dave Los Alamos National Laboratory
 P. K. Gupta Honeywell Aerospace
 F. M. Hosking Sandia National Laboratories
 H. H. Lang York International Corporation
 A. Severin Bradley Corporation
 R. W. Smith Materials Resources International
AWS C3D Subcommittee on Brazing Specifications

J. R. Jachna, Chair
S. R. Hazelbaker, Vice Chair
S. N. Borrello, Secretary
R. Aluru
D. E. Budinger
S. L. Feldbauer
Y. Flom
C. E. Fuerstenau
Y. P. Gao
R. A. Gross Gourley
T. P. Hirthe
F. M. Hosking
D. Kane
G. F. Kayser
M. J. Kuta
E. Liguori
J. A. Liguori
M. J. Lucas, Jr.
R. P. McKinney
C. R. Moyer
J. Newman
T. Oyama
C. A. Paponetti, Sr.
R. L. Peaslee
M. J. Pohlman
R. W. Smith
P. T. Vianco
C. M. Volpe
C. Walker
C. Wohlmuth

Advisors to the C3D Subcommittee on Brazing Specifications

B. Barten
A. B. Cedilote
N. C. Cole
P. K. Gupta
M. J. Higgins
T. A. Kern
H. H. Lang
H. Mizuhara
W. D. Rupert
A. Severin
K. P. Thornberry
R. W. Walls

Modine Manufacturing Company
The Prince & Izant Company
American Welding Society
Chromalloy Gas Turbine Corporation
General Electric Aviation
Abbott Furnace Company
NASA Goddard Space Flight Center
Lucas-Milhaupt, Incorporated
Pratt and Whitney Rocketdyne
Curtiss-Wright
Kru-Mar Manufacturing Services, Incorporated
Sandia National Laboratories
ADB Industries
Pratt & Whitney Rocketdyne
Lucas-Milhaupt, Incorporated
Scarrott Metallurgical
Scarrott Metallurgical
General Electric Aviation
The Prince & Izant Company
Bodycote Thermal Processing
Laser Technology, Incorporated
WESGO Metals
Expert Brazing and Heat Treating, Incorporated
Wall Colmonoy Corporation
Honeywell
Materials Resources International
Sandia National Laboratories
Wolverine Joining Technologies
Sandia National Laboratories
Consultant
Delphi Thermal & Interior
Wabco, Incorporated
NCC Engineering
Honeywell Aerospace
Pratt and Whitney
Consultant
York International Corporation
H Mizuhara Consulting Services
Wolverine Joining Technologies
Bradley Corporation
Care Medical, Incorporated
Walls Engineering
AWS C3E Subcommittee on Brazing Conferences

R. W. Smith, Chair Materials Resources International
A. Rabinkin, Vice Chair Metglas, Incorporated/Hitachi Metals
S. N. Borrero, Secretary American Welding Society
G. L. Alexy The Prince & Izant Company
R. Aluru Chromalloy Gas Turbine Corporation
D. W. Bucholz Conforma Clad, Incorporated
C. F. Darling Lucas-Milhaupt, Incorporated
S. L. Feldbauer Abbott Furnace Company
Y. Flom NASA Goddard Space Flight Center
D. Fortuna Sulzer Metco (US), Incorporated
F. M. Hosking Sandia National Laboratories
D. A. Javernick Los Alamos National Laboratory
M. J. Lucas, Jr. General Electric Aviation
T. Oyama WESGO Metals
C. A. Paponetti Expert Brazing & Heat Treating
J. P. Sands Wolverine Joining Technologies
P. T. Vianco Sandia National Laboratories
C. Walker Sandia National Laboratories

Advisors to the C3E Subcommittee on Brazing Conferences

N. C. Cole NCC Engineering
K. L. Gustafson Consultant
M. J. Higgins Pratt and Whitney
T. P. Hirthe Kru-Mar Manufacturing Services, Incorporated
H. Mizuhara H Mizuhara Consulting Services
W. D. Rupert Wolverine Joining Technologies
M. L. Santella Oak Ridge National Laboratories
A. Severin Bradley Corporation
K. P. Thornberry Care Medical, Incorporated
C. Wohlmuth Consultant

Special Contributor

C. L. Jenney American Welding Society
Foreword

This foreword is not part of the *Brazing Handbook*, but is included for informational purposes only.

The *Brazing Handbook* has been substantively updated from the previous edition. For your convenience, the current edition has been reorganized into three main sections—Fundamentals, Processes, and Applications. There are two new chapters, Chapter 11, “Introduction to the Brazing Processes” and Chapter 36, “Diamond.” The new edition covers cutting edge process technologies and new materials. Updating and expanding the chapter on brazing and operator safety has also been a key initiative.

The new edition has taken several years to complete, requiring the collaboration and support of many individuals and companies; their contribution has been invaluable! The AWS Handbook Committee members have risen to this challenge and responded with an outstanding technical reference for the brazing industry.

You will notice that each chapter was assigned to a reviewer who was responsible for its final technical criteria. Many reviewers had assistance from others at their respective company or within the industry. Without their collaboration, the book would not have been possible.

Special thanks go to the members of the AWS C3 Committee on Brazing and Soldering and AWS C3A Subcommittee for the Brazing Handbook who addressed the many challenges that accompany such an undertaking.

Carmen Paponetti
Chair, C3A Subcommittee for the Brazing Handbook

Errata

The following Erratum has been identified and will be incorporated into the next reprinting of this document.

- Page 61, under Inspection, 3rd, 4th, and 5th paragraphs:

Replace the following:

Class A joints are those joints subjected to high stresses, cyclic stresses, or both, the failure of which could result in significant risk to persons or property or significant operational failure.

Class B joints are those joints subjected to low or moderate stresses, cyclic stresses, or both, the failure of which could result in significant risk to persons or property significant operational failure.

Class C joints are those joints subjected to low or moderate stresses, cyclic stresses, or both, the failure of which would have no significant detrimental effect.

With the following:

Class A is typically chosen for joints subjected to high stresses, cyclic stresses, or both, the failure of which could result in significant risk to persons or property, or in significant operational failure.

Class B is frequently chosen for joints subjected to low or moderate stresses, cyclic stresses, or both, the failure of which could result in significant risk to persons or property, or in significant operational failure.

Class C is frequently chosen for joints subjected to low or moderate stresses, cyclic stresses, or both, the failure of which would have no significant detrimental effect.
Knowledge of the ancient art of brazing is continuously being supplemented by an ever-increasing amount of technical information about metals and their behavior, so that today brazing must be considered both an art and a science. This Fifth Edition of the *Brazing Handbook* (formerly the *Brazing Manual*) addresses the fundamental concepts of brazing and incorporates the many advances made since the *Brazing Manual* was first published.

The American Welding Society defines brazing as “a group of joining processes that produces coalescence of materials by heating them to the brazing temperature in the presence of a filler metal having a liquidus above 840°F (450°C) and below the solidus of the base metal. The filler metal is distributed between the closely fitted faying surfaces of the joint by capillary action.”

Brazing then must meet each of three criteria:
1. The parts must be joined without melting the base metals.
2. The filler metal must have a liquidus temperature above 840°F (450°C).
3. The filler metal must wet the base metal surfaces and be drawn into or held in the joint by capillary action.

To achieve a good joint using any of the various brazing processes described in this *Brazing Handbook*, the parts must be properly cleaned and must be protected, either by fluxing or protective atmosphere during the heating process, to prevent excessive oxidation. The parts must be designed to afford a capillary for the filler metal when properly aligned, and a heating process must be selected that will provide the proper brazing temperature and heat distribution.

No analysis of a subject that is continuously being improved can hope to be complete, nor can the subject be covered with a thoroughness that would satisfy the specialist. For this reason, most chapters provide a list of references that give additional and more detailed information on the subject. Yet even after the additional research, trial and error may be required to successfully complete unusual applications. It is hoped, however, that the trials and errors will be fewer for having this *Brazing Handbook* as a guide.

Comments, inquiries, and suggestions for future revisions of the *Brazing Handbook* are welcome. They should be sent to the Secretary, AWS C3 Committee on Brazing and Soldering, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Table of Contents

Chapter 1—Basics of Brazing
- Introduction ... 1
- Historical Perspective ... 2
- Physics of Brazing .. 3
- Factors Controlling the Properties of the Brazement 6
- The Five Elements of Brazing 9
- Bibliography .. 20
- Suggested Reading List ... 20

Chapter 2—Brazement Design
- Introduction ... 21
- Design Variables .. 22
- Base Metal .. 23
- Joint Design ... 23
- Fluxes and Protective Atmospheres 32
- Stress Distribution .. 33
- Service Requirements ... 38
- Brazing Filler Metal ... 48
- Brazing Process Variables 52
- Prebraze and Postbraze Cleaning 53
- Postbraze Heat Treatment 53
- Testing of Brazed Joints to Attain Design Data 54
- Inspection ... 61
- Drafting Conventions .. 61
- Bibliography .. 66
- Suggested Reading List ... 66

Chapter 3—Brazing Filler Metals
- Introduction ... 67
- Melting of Brazing Filler Metals 68
- Brazing Filler Metal–Base Metal Interaction 74
- Brazing Filler Metal Selection 74
- Brazing Filler Metal Classifications 81
- Bibliography .. 98
- Suggested Reading List ... 99

Chapter 4—Fluxes and Atmospheres
- Introduction ... 101
- Fluxes ... 102
- Controlled Brazing Atmospheres 110
- Bibliography .. 126
- Suggested Reading List ... 126
CHAPTER 5—PRECLEANING AND SURFACE PREPARATION .. 127
Introduction .. 127
Cleaning Processes .. 128
Surface Pretreatments .. 128
Braze Flow Inhibitors ... 133
Maintaining Cleanliness ... 134
Suggested Reading List ... 135

CHAPTER 6—ASSEMBLY AND FIXTURING ... 137
Introduction ... 137
Assembly ... 138
Fixturing ... 139
Suggested Reading List ... 143

CHAPTER 7—CORROSION OF BRAZED JOINTS ... 145
Introduction ... 146
Fundamentals ... 146
Types of Corrosion ... 147
Proper Brazing Procedures to Minimize Corrosion ... 160
Removing Source of Corrosion .. 161
Corrosion Resistance ... 163
Bibliography ... 166
Suggested Reading List ... 166

CHAPTER 8—INSPECTION OF BRAZED JOINTS .. 169
Introduction ... 170
Acceptance Criteria .. 170
Discontinuities in Brazed Joints .. 170
Inspection Methods ... 171
Critical Brazed Components ... 177
Bibliography ... 178

CHAPTER 9—CODES AND OTHER STANDARDS .. 179
Introduction ... 180
Applications ... 180
Standards-Developing Organizations ... 181
Manufacturer Associations ... 192

CHAPTER 10—SAFETY AND HEALTH .. 193
Introduction ... 194
Historical Background ... 194
Safety Management ... 195
General Work Area Safe Practices .. 198
Personal Protective Equipment .. 201
Protection against Fumes and Gases .. 202
Safe Handling of Compressed Gases, Gas Cylinders, and Containers 208
Electrical Safety ... 212
Fire Prevention and Protection ... 214
Noise Hazards ... 214
Ergonomics ... 215
Process-Specific Safe Practices ... 223
Combustibility of Metal Powders ... 224
Bibliography ... 224
Suggested Reading List.. 325

CHAPTER 16—RESISTANCE BRAZING... 327
Introduction ... 328
Equipment ... 329
Materials... 332
Modes of Operation... 334
Process Requirements... 335
Applications.. 337
Safety Considerations... 338
Bibliography.. 339
Suggested Reading List... 339

CHAPTER 17—DIFFUSION BRAZING... 341
Introduction ... 342
Process Description.. 342
Equipment ... 343
Materials and Consumables... 344
Process Variables.. 346
Test Method to Determine the Diffusion Cycle .. 348
Brazed Joint Quality .. 349
Applications.. 349
Bibliography.. 350

CHAPTER 18—OTHER BRAZING PROCESSES.. 351
Introduction ... 352
Electron Beam Braze Welding .. 352
Exothermic Brazing... 353
Infrared Brazing.. 354
Laser Beam Braze Welding .. 354
Microwave Brazing... 355
Obsolete Processes ... 356

CHAPTER 19—BRAZE WELDING... 359
Introduction ... 360
Process Fundamentals... 360
Equipment .. 361
Materials and Consumables... 361
Process Variables.. 361
Process Considerations.. 363
Applications.. 363
Quality of Braze Welds .. 366
Safe Practices ... 367
Bibliography.. 367

CHAPTER 20—ALUMINUM AND ALUMINUM ALLOYS... 369
Introduction ... 370
Materials.. 370
Material Preparation... 373
Joint Types... 373
Performance of Joints .. 375
Corrosion Resistance .. 376
Applicable Brazing Processes.. 376

Bibliography.. 378

Test Method to Determine the Diffusion Cycle.. 348
Brazed Joint Quality .. 349
Applications.. 349
Bibliography.. 350

CHAPTER 17—DIFFUSION BRAZING... 341
Introduction ... 342
Process Description... 342
Equipment .. 343
Materials and Consumables... 344
Process Variables.. 346
Test Method to Determine the Diffusion Cycle .. 348
Brazed Joint Quality .. 349
Applications.. 349
Bibliography.. 350

CHAPTER 18—OTHER BRAZING PROCESSES.. 351
Introduction ... 352
Electron Beam Braze Welding .. 352
Exothermic Brazing... 353
Infrared Brazing.. 354
Laser Beam Braze Welding .. 354
Microwave Brazing... 355
Obsolete Processes ... 356

CHAPTER 19—BRAZE WELDING... 359
Introduction ... 360
Process Fundamentals... 360
Equipment .. 361
Materials and Consumables... 361
Process Variables.. 361
Process Considerations.. 363
Applications.. 363
Quality of Braze Welds .. 366
Safe Practices ... 367
Bibliography.. 367

CHAPTER 20—ALUMINUM AND ALUMINUM ALLOYS... 369
Introduction ... 370
Materials.. 370
Material Preparation... 373
Joint Types... 373
Performance of Joints .. 375
Corrosion Resistance .. 376
Applicable Brazing Processes.. 376

Bibliography.. 378
Joint Functionality and Process Development ... 467
Processes and Equipment ... 467
Surface Preparation and Cleaning .. 469
Bibliography .. 469
Suggested Reading List... 469

CHAPTER 25—COPPER AND COPPER ALLOYS .. 471
Introduction .. 472
Base Metals .. 472
Processes and Equipment .. 477
Joint Design ... 477
Precleaning and Surface Preparation .. 477
Brazing Filler Metals ... 478
Fluxes .. 478
Atmospheres .. 479
Assembly .. 480
Brazing Considerations .. 480
Postbrazing Operations .. 486
Inspection .. 486
Safety Considerations ... 487
Bibliography .. 487

CHAPTER 26—LOW-CARBON, LOW-ALLOY, AND TOOL STEELS 489
Introduction ... 490
Low-Carbon and Low-Alloy Steels .. 490
Tool Steels .. 493
Bibliography .. 496

CHAPTER 27—MAGNESIUM AND MAGNESIUM ALLOYS .. 497
Introduction ... 498
Characterization and Brazeability of Base Metals .. 498
Joint Design ... 502
Brazing Filler Metals ... 502
Fluxes .. 503
Brazing Processes .. 503
Precleaning and Surface Preparation .. 505
Assembly and Fixturing ... 506
Selection of the Brazing Temperature ... 506
Postbrazing Cleaning ... 506
Corrosion Resistance ... 506
Inspection .. 506
Typical Applications ... 507
Safe Practices .. 508
Bibliography .. 509
Suggested Reading List... 510

CHAPTER 28—NICKEL-BASED AND COBALT-CONTAINING ALLOYS 511
Introduction ... 512
Nickel and Nickel-Based Alloys .. 512
Cobalt-Containing Alloys ... 518
Bibliography .. 519
Suggested Reading List... 519
CHAPTER 29—PRECIOUS METALS ... 521
Introduction .. 522
Gold and Gold Alloys ... 522
Platinum Group Metals .. 522
Silver and Silver Alloys ... 523
Plated Materials .. 524
Brazing Filler Metals .. 524
Joint Design .. 525
Processes and Equipment ... 525
Precleaning and Surface Preparation ... 526
Fluxes and Atmospheres .. 525
Assembly Procedures and Techniques ... 526
Postbrazing Operations ... 526
Inspection .. 527
Bibliography ... 527
Suggested Reading List ... 527

CHAPTER 30—REACTIVE METALS: TITANIUM, ZIRCONIUM, AND BERYLLIUM ... 529
Introduction .. 530
Applicable Brazing Processes ... 530
Atmospheres and Fluxes .. 532
Titanium and Titanium Alloys ... 533
Zirconium and Zirconium Alloys ... 541
Beryllium .. 543
Safe Practices .. 545
Bibliography ... 549
Suggested Reading List ... 550

CHAPTER 31—REFRACTORY METALS: NIOBium, MOlybdeneNUM, TANTALUM, AND TUNGSTEN ... 551
Introduction .. 552
Fundamentals .. 552
Niobium and Its Alloys ... 557
Molybdenum and Its Alloys ... 559
Tantalum and Its Alloys .. 561
Tungsten ... 562
Joining of Refractory Metals to Other Materials and Dissimilar Metals ... 564
Suggested Reading List ... 565

CHAPTER 32—STAINLESS STEELS ... 567
Introduction .. 568
Categorization of Stainless Steels .. 568
Processes and Equipment .. 571
Precleaning and Surface Preparation ... 571
Brazing Filler Metals .. 571
Fluxes and Atmospheres .. 573
Postbrazing Operations .. 574
Repair Methods .. 574
Applications ... 574
Bibliography ... 575
Supplementary Reading List ... 575
INDEX

- **APPENDIX C—THERMAL EXPANSION DATA**
- **APPENDIX B—PROPERTIES OF BRAZABLE METALS AND ALLOYS**
 - Page 645
- **APPENDIX A—BRAZING TERMS AND DEFINITIONS**
 - Page 637
- **Suggested Reading List**
 - Page 636
- **Bibliography**
 - Page 635
- **Applications**
 - Page 634
- **Brazing Filler Metals and Brazing Processes**
 - Page 628
- **Interaction of Diamond with Liquid Metals and Alloys**
 - Page 626
- **BASE MATERIALS**
 - Page 624
- **CHAPTER 33—ELECTRON TUBES AND VACUUM EQUIPMENT**
 - Page 577
 - Introduction
 - Base Materials
 - Brazing Filler Metals
 - Inspection
 - Bibliography
 - Suggested Reading List
- **CHAPTER 34—HONEYCOMB STRUCTURES**
 - Page 587
 - Introduction
 - Brazing Processes and Equipment
 - Base Metals
 - Brazing Filler Metals
 - Assembly for the Fabrication of Honeycomb
 - Quality Control and Inspection
 - Applications
 - Bibliography
 - Suggested Reading List
- **CHAPTER 35—PIPE AND TUBING**
 - Page 609
 - Introduction
 - Copper and Copper Alloys
 - Cutting and Sizing Pipe and Tubing
 - Surface Preparation and Cleaning
 - Fluxes and Fluxing Operations
 - Assembly
 - Application of Heat and Brazing Filler Metals
 - Postbraze Cleaning
 - Inspection
 - Bibliography
- **CHAPTER 36—DIAMOND**
 - Page 623
 - Introduction
 - Base Materials
 - Interaction of Diamond with Liquid Metals and Alloys
 - Brazing Filler Metals and Brazing Processes
 - Applications
 - Bibliography
 - Suggested Reading List
- **APPENDIX A—BRAZING TERMS AND DEFINITIONS**
 - Page 637
- **APPENDIX B—PROPERTIES OF BRAZABLE METALS AND ALLOYS**
 - Page 645
- **APPENDIX C—THERMAL EXPANSION DATA**
 - Page 665
- **INDEX**
 - Page 679
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The Five Elements of Brazing</td>
<td>14</td>
</tr>
<tr>
<td>1.2 The Five Elements of Brazing: Design</td>
<td>15</td>
</tr>
<tr>
<td>1.3 The Five Elements of Brazing: Base Materials</td>
<td>16</td>
</tr>
<tr>
<td>1.4 The Five Elements of Brazing: Filler Metals</td>
<td>17</td>
</tr>
<tr>
<td>1.5 The Five Elements of Brazing: Heat Sources</td>
<td>18</td>
</tr>
<tr>
<td>1.6 The Five Elements of Brazing: Protective Covers</td>
<td>19</td>
</tr>
<tr>
<td>2.1 Recommended Joint Clearance (Gap) at the Brazing Temperature</td>
<td>26</td>
</tr>
<tr>
<td>2.2 Brazing and Braze Welding Process Letter Designation Symbols</td>
<td>62</td>
</tr>
<tr>
<td>2.3 Nondestructive Examination Method Letter Designations</td>
<td>62</td>
</tr>
<tr>
<td>3.1 Solidus, Liquidus, and Brazing Temperature Ranges</td>
<td>71</td>
</tr>
<tr>
<td>3.2 Base Metal-Brazing Filler Metal Combinations</td>
<td>75</td>
</tr>
<tr>
<td>3.3 Maximum Service Temperatures Recommended for Various Brazing Filler Metal Compositions</td>
<td>76</td>
</tr>
<tr>
<td>3.4 Chemical Composition Requirements for Aluminum and Magnesium Brazing Filler Metals</td>
<td>82</td>
</tr>
<tr>
<td>3.5 Chemical Composition Requirements for Copper, Copper-Zinc, and Copper-Phosphorus Brazing Filler Metals</td>
<td>83</td>
</tr>
<tr>
<td>3.6 Chemical Composition Requirements for Silver Brazing Filler Metals</td>
<td>84</td>
</tr>
<tr>
<td>3.7 Chemical Composition Requirements for Gold Brazing Filler Metals</td>
<td>85</td>
</tr>
<tr>
<td>3.8 Chemical Composition Requirements for Nickel and Cobalt Brazing Filler Metals</td>
<td>86</td>
</tr>
<tr>
<td>3.9 Chemical Composition Requirements for Brazing Filler Metals for Vacuum Service</td>
<td>87</td>
</tr>
<tr>
<td>4.1 Brazing Fluxes</td>
<td>106</td>
</tr>
<tr>
<td>4.2 Atmospheres for Brazing: AWS Designation, Dew Point, Chemistry, and Applicable Brazing Filler Metals and Base Metals</td>
<td>111</td>
</tr>
<tr>
<td>4.3 Relationship between the Dew Point and the Moisture Content</td>
<td>115</td>
</tr>
<tr>
<td>5.1 Properties of Chlorinated Solvents</td>
<td>130</td>
</tr>
<tr>
<td>7.1 Galvanic Series</td>
<td>152</td>
</tr>
<tr>
<td>9.1 Source of Codes and Standards Related to Brazing</td>
<td>181</td>
</tr>
<tr>
<td>10.1 Relative Explosibility of Various Dusts</td>
<td>222</td>
</tr>
<tr>
<td>11.1 Technical and Economic Risks in an Aerospace Brazing Application (Aluminum Stator Shown in Figure 11.3)</td>
<td>231</td>
</tr>
<tr>
<td>11.2 Typical Preventive Maintenance Schedule for Vacuum Furnace Systems Used for Brazing</td>
<td>233</td>
</tr>
<tr>
<td>12.1 Standard Specifications for Brazing Fluxes</td>
<td>247</td>
</tr>
<tr>
<td>12.2 Characteristics of the Common Fuel Gases</td>
<td>248</td>
</tr>
<tr>
<td>13.1 Approximate Mean Specific Heat from 70°F (21°C) to Higher Temperatures (Cal/g°C)</td>
<td>261</td>
</tr>
<tr>
<td>13.2 Silver-Based Brazing Filler Metals Frequently Used in Induction Brazing</td>
<td>266</td>
</tr>
<tr>
<td>14.1 Conversion of Pressure Units</td>
<td>295</td>
</tr>
<tr>
<td>14.2 Eutectic-Forming Materials in Vacuum Atmospheres</td>
<td>310</td>
</tr>
<tr>
<td>16.1 Composition and Thermal Properties of Brazing Filler Metals Suitable for Resistance Brazing</td>
<td>333</td>
</tr>
<tr>
<td>19.1 Chemical Composition of Welding Rods for Braze Welding</td>
<td>362</td>
</tr>
<tr>
<td>19.2 Properties and Applications of Brazing Filler Metals</td>
<td>362</td>
</tr>
<tr>
<td>19.3 Typical Conditions for the Braze Welding of Galvanized Steel Sheet with the Gas Metal Arc Short-Circuiting Transfer Method</td>
<td>366</td>
</tr>
</tbody>
</table>
Table | Page No.
--- | ---
25.6 | Mechanical Properties of 0.83% Chromium Copper After Simulated Brazing Cycles 484
25.7 | Mechanical Properties of 0.16% Zirconium Copper After Simulated Brazing Cycles 485
25.8 | Brazing Filler Metal Selection Chart for the Joining of Dissimilar Metals .. 486
26.1 | Commonly Used Tool Steels .. 493
27.1 | Composition and Physical Properties of Brazeable Magnesium Alloys .. 499
27.2 | Typical Mechanical Properties of Brazeable Magnesium Alloys .. 499
27.3 | Effects of Heating Time on the Mechanical Properties of Magnesium Sheet Alloys AZ31B-O and ZE10ZA-O ... 500
27.4 | Compositions of Matrix Alloys in Ultralightweight Magnesium Matrix Composites ... 501
27.5 | Mechanical Properties of Magnesium Matrix Alloys and Their Composites Reinforced with SiC or TiC Particles and Graphite or Al₂O₃ Fibers .. 501
27.6 | Composition and Physical Properties of Commercial Magnesium Brazing Filler Metal 502
27.7 | Standard Forms and Sizes of Brazing Filler Metal AWS BMg-1 ... 503
27.8 | Composition and Physical Properties of Low-Temperature Brazing Filler Metals 503
27.9 | Compositions and Operational Temperatures for Some Magnesium Brazing Fluxes 504
27.10 | Chemical Treatment Solutions .. 505
28.1 | Tensile Strength of X-40 (Co-25.5Cr-10.5Ni-7.5W-0.5C-0.75Si-0.75Mn) Superalloy Joints Brazed with Amorphous Brazing Foils at 2192°F (1200°C) for 16 Hours and Then Annealed at 1400°F (760°C) for 48 Hours ... 517
29.1 | Composition and Melting Points of Gold Dental Filler Metals .. 524
30.1 | Classification of Titanium and Titanium Alloys .. 534
30.2 | Annealing Heat Treatments for Titanium Alloys ... 536
30.3 | Solutioning and Aging Heat Treatments for Titanium Alloys ... 537
30.4 | Beta Transus Temperatures of Titanium Alloy .. 538
30.5 | Chemical Composition of Commercial Zirconium and Zirconium Alloys .. 542
30.6 | Suggested Brazing Filler Metals for the Joining of Zirconium ... 543
31.1 | Refractory Metal Melting Points and Crystal Structures .. 553
31.2 | Transition Temperature Ranges for Pure Refractory Metals .. 554
31.3 | Recrystallization Temperature Ranges for Unalloyed Refractory Metals ... 555
31.4 | Cleaning Methods for Refractory Metals ... 556
31.5 | Shear Strengths of Ta-V-Nb and Ta-V-Ti Brazed Joints in Vacuum at 2000°F (1093°C) 558
31.6 | Brazing Filler Metals for Refractory Metals .. 563
32.1 | Maximum Service Temperatures and Brazing Filler Metals for Stainless-Steel Brazements 572
33.1 | Composition of Brazing Filler Metals Specially Produced for the Brazing of Vacuum Devices and Equipment .. 585
35.1 | Copper Tube: Types, Standards, Applications, Tempers, and Lengths .. 611
35.2 | Dimensions and Weights of Copper Water Tube .. 613
35.3 | Dimensional Data for Copper and Copper Alloy Solder/Braze Joint Fitting Ends Using ASME B16.221 or B16.182 Solder Joint Pressure Fittings .. 615
35.4 | Dimensional Data for Copper and Copper Alloy Solder/Braze Joint Fitting Ends Using ASME B16.50 Braze Joint Pressure Fittings .. 616
35.5 | Steel Pipe, Schedule 40 .. 617
35.6 | Stainless Steel Pipe, Schedule 5 ... 617
35.7 | Dimensions, Weights, and Tolerances in Diameter and Wall Thickness for Copper Threadless Pipe (TP) Sizes ... 618
35.8 | Roundness Tolerances .. 618
36.1 | Physical and Mechanical Properties of Different Forms of Diamonds .. 625
<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2 Solubility of Carbon in Metals (Solid and Liquid Solutions) at Different Temperatures</td>
<td>627</td>
</tr>
<tr>
<td>36.3 Gibbs Standard Free Energy of the Formation of Carbides, $\Delta_f G^\circ(T)$, at Different Temperatures</td>
<td>628</td>
</tr>
<tr>
<td>36.4 Some Commercial Brazing Filler Metals Used to Join Diamonds with Metals, Ceramics, and Cemented Carbides</td>
<td>629</td>
</tr>
<tr>
<td>C.1 Materials Listed and Figure Numbers</td>
<td>666</td>
</tr>
</tbody>
</table>
List of Figures

Figure Page No.
1.1 Wall Painting Dated 1475 B.C. from the Tomb of Rekh-Mi-Re at Thebes, Egypt................................. 3
1.2 Schematic Illustration of a Brazed Joint ... 6
1.3 Contact Angle, θ, for a Liquid Droplet on a Solid Surface: (A) θ > 90°; (B) θ < 90°; and (C) θ = 0° ... 8
1.4 Variations in Viscosity with the Temperature of Pure Iron, Nickel, and Copper................................. 9
1.5 Relationship of Tensile Strength to Joint Clearance in Stainless Steel Brazed with AWS Brazing Filler Metal AWS BAg-1a .. 10
1.6 Silver-Copper Phase Diagram ... 11
1.7 Difference in Flow Properties between Eutectic and Noneutectic Brazing Filler Metals: (A) Slow Furnace Heating of AWS BAg-2 Produces a Nonuniform Flow by Capillary Action due to Liquation; (B) Rapid Heating of AWS BAg-2 Results in a Better Flow by Capillary Action, and (C) Slow Furnace Heating of AWS BAg-1 Results in Uniform Heating As No Liquation Occurs in Brazing Filler Metals with Eutectic Compositions ... 12
2.1 Basic Lap and Butt Joints Used in Brazing ... 24
2.2 Typical Scarf Joint Design ... 24
2.3 Typical Scarf Joint Design ... 25
2.4 Relationship of Shear Strength to Joint Thickness for Pure Silver Joints in 0.5 in. (12.7 mm) Diameter Drill Rod Induction Brazed in a Dry Atmosphere of 10% H₂-90% N₂ (No Flux Used) ... 27
2.5 Tensile Strength of Silver Brazed Butt Joints 0.5 in. (12.7 mm) in Diameter as a Function of Joint Thickness ... 28
2.6 Thermal Expansion Curve for Several Common Materials (Refer to Annex C for Additional Data) .. 29
2.7 Nomograph Used to Find the Change in Diametric Clearance (∆D) in Brazed Joints of Dissimilar Metals .. 31
2.8 Lap Joint Designs to be Used at High and Low Stress; Flexure of the Right Member in (C) and (D) Distributes the Load through the Base Metal, Thus Removing the Stress Concentration and Improving the Fatigue Life of the Brazement ... 34
2.9 Butt Joint Designs to Increase the Load-Carrying Capacity of the Joint under High Stress and Dynamic Loading .. 35
2.10 Joint Designs Useful with Sheet Metal Brazements .. 35
2.11 Joint Designs for Sheet Metal Brazements; Capacity to Carry High Static and Dynamic Loads Increases from (A) to (D) .. 36
2.12 Plate or Hub and Shaft Joint Designs for Rotating Workpieces or Wheels: Joints Are in Tension Due to the Centrifugal Loading of a Rotating Wheel ... 37
2.13 Sheet and Plate or Hub Shaft Joint Designs to Remove Stress Concentrations from the Edge of the Brazed Joint (A) .. 38
2.14 Joint Designs for Brazed Tubes and Fittings ... 39
2.15 Joint Designs for Tubes and Headers in a Heat Exchanger. Pulsation, Sonic Stress, and High-Velocity Air across the Tubes Can Vibrate the Tube to Destruction at the Brazed Joint 40
2.16 Tube and Diaphragm Section of an Actual Part on Which the Diaphragm Is Hydraulically Loaded, Causing Premature Brazed Joint Failure .. 41
2.17 Brazed Blade Attachments for Thin Blading ... 42
2.18 Fatigue Properties of 0.25 in. (6.35 mm) Diameter Silver Brazed Nonstandard Butt Joint in 4340 Steel .. 43
2.19 Design of a Nonstandard Single-Lap-Joint Fatigue Specimen of AISI 347 Sheet Metal Used to Obtain Fatigue Strength Data for Brazed Joints ... 44
2.20 Fatigue Data for AISI 347 Flat Sheet Metal Specimens for Comparison with the Brazed Specimens Demonstrating the Effect of Temperature on the Fatigue Strength ... 45

xxvii
Figure Page No.
2.21 Fatigue Data for AISI 347 Sheet Metal Brazed with AWS BNi-1 and for the Base Metal Processes through the Brazing Cycle Showing the Effect of Temperature and Joint Overlap on the Fatigue Strength of Single-Lap Joints ... 45
2.22 A Brazed Joint in an Electrical Conductor .. 46
2.23 Optimum Lap for Brazed Joints in Electrical Conductors, Where Member Thickness T_1 Is Less Than or Equal to T_2 ... 46
2.24 Typical Joints Used in the Brazing of Electrical Applications...................................... 47
2.25 Brazed Joints Recommended when Flexibility in Leads Is Required 47
2.26 Brazed Joints Typically Used for Pressure-Tight Containers ... 47
2.27 Venting of a Container during Brazing ... 48
2.28 Venting of a Drilled Blind Hole Joint for Brazing .. 48
2.29 Methods of Preplacing Brazing Filler Metal in Wire Form: (A) Filler Metal Applied to the Most Accessible Area of the Joint; (B) Internal Placement of the Filler Metal with a Groove in the Thicker Fitting; (C) Internal Placement with Groove in the Thicker Tube Member; and (D) Internal Placement for Best Visual Examination ... 49
2.30 Brazed Joints with Grooves for the Preplacement of Filler Metal Showing the Resulting Void after Brazing .. 49
2.31 Brazed Joint Design and Filler Metal Feeding for Tube and Header in a Nuclear Application .. 50
2.32 Joint Design for the Brazing of Fins to Tubes on a Heat Exchanger 51
2.33 Preplacement of Brazing Filler Metal Shim or Preform ... 51
2.34 Original Single-Lap Test Specimen .. 55
2.35 Miller-Peaslee (M-P) Test Specimen ... 55
2.36 Average Unit Shear Stress and Base Metal Tensile Stress as Functions of the Overlap Distance .. 56
2.37 Shear Test Data for Brazed Joints of AISI 410 Stainless Steel and Filler Metal AWS BNi-1: (A) As-Hardened with No Stress Relief and (B) Hardened and Tempered to HRC 28 Average .. 57
2.38 Shear Test Data for Brazed Joints of SAE 1010 Mild Steel and Filler Metal AWS BAg-1 (Torch Brazed): (A) Transition around 2T and (B) Base Metal Curve Transition around 1T ... 58
2.39 Shear Test Data for Torch Brazed Joints of Copper Base Metal and Filler Metal AWS BAg-1: (A) Transition is Less than 1T; (B) Transition is 2T ... 59
2.40 Shear Test Data for Furnace Brazed Joints of SAE 1010 Mild Steel and Filler Metal BCu-1: (A) Transition is 1T; (B) Transition is 2T .. 60
2.41 Nondestructive Examination Symbols and Location of Elements 62
2.42 Location of Elements in a Brazing Symbol for a Lap Joint .. 63
2.43 Application of Torch Brazing Symbols (Fillet Size Can Be Specified Only if Brazing Is Performed in the Flat Brazing Position) .. 63
2.44 Application of Furnace Brazing Symbols (No Fillet Size Can Be Specified) 64
2.45 Symbol for the Scarf Joint .. 65
2.46 Braze Cross Sections and the Minimum Application of Brazing Symbols 65
3.1 Phase Diagram for the Silver-Copper Binary System ... 69
3.2 Liquation of AWS BAg-1 and AWS BAg-2 Filler Metals: (A) As a Result of the Slow Heating of AWS BAg-1 in a Furnace, No Liquation Occurs with Filler Metals Having a Narrow Melting Range of 20°F (11°C); or (B) As a Result of the Slow Heating of AWS BAg-2 in a Furnace, a Large Skull Remains Because of Liquation Caused by the Wide Melting Range of 70°F (39°C); and (C) As a Result of the Rapid Heating of AWS BAg-2, A Small Skull Remains .. 70
3.3 Brazing Filler Metal in the Form of Wire, Rods, and Strip .. 77
3.4 Preformed Filler Metal Shapes ... 78
3.5 Use of Preform Rings in the Brazing of Copper Return Bends for the Heating and Air Conditioning Industry ... 78
3.6 Brazing Filler Metal Powder .. 79
3.7 Brazing Filler Metal Paste .. 79
12.12 Stages Experienced by a Low-Temperature General Purpose Brazing Flux during the Heating Cycle.. 251

12.1 In Manual Torch Brazing Operations .. 238
12.2 Manual Torch Brazing Equipment .. 238
12.3 Rotary Index Torch Brazing Machine .. 241
12.4 Single-Station Brazing Machine .. 242
12.5 In-Line Brazing Conveyor System .. 243
12.6 Low-Volume Brazing Shuttle Machine .. 244
12.7 Robot-Mounted Brazing Filler Metal Paste Dispensers ... 245
12.8 Vapor Flux Dispensers... 245
12.9 Dual Brazing Filler Metal Wire Feeder .. 245
12.10 Robotic Torch Brazing of an Automotive Door Panel ... 246
12.11 Flame Conditions for Oxyacetylene (Other Oxyfuel Flames Are Similar) ... 249
12.12 Stages Experienced by a Low-Temperature General Purpose Brazing Flux during the Heating Cycle.. 251

13.1 Induced Current, I, Produced by an Electromagnetic Field in a Conducting Assembly .. 256
13.2 Heat Pattern Created by Resistance to the Flow of the Induced Current ... 257
13.3 Bell-Jar Arrangement for the Induction Brazing of Tube Assemblies in a Reducing Atmosphere with No Flux .. 257
13.4 Schematic Illustration of a Typical Induction Brazing System ... 259
13.5 Approximate Power Requirements per Pound (Kilogram) per Hour of Brazement ... 262
13.6 Schematic Illustrations of Basic Induction Coil Designs from Copper Tubing: (A) External; (B) Plate-Type; (C) Convey or; (D) Split-Solenoid; (E) Pie-Wound; and (F) Internal ... 263
13.7 Various Induction Coils .. 264
13.8 Inductors Made from Solid Copper Bar Indicating Fabrication and Water-Cooling Arrangements: (A) Single-Turn; (B) Two-Station; (C) Four-Station with Internal Cooling, and (D) Four Station with External Cooling ... 264
13.9 Typical Joint and Coil Designs Used in Induction Brazing and Suggested Positions for Preplacement of the Brazing Filler Metal Preforms .. 268
13.10 Influence of Joint Thickness on Tensile Strength When Joining Stainless Steel Sheet of 160,000 (Assumed) psi (1100 MPa) Using Silver Brazing Filler Metal of 65,000 psi (448 MPa) ... 269
13.11 Schematic Showing an Induction Coil; Work Arrangement for the Simultaneous Brazing of (1) a Brass Adapter to a Stainless-Steel Shaft and (2) a Brass Adapter to a Bellows .. 270
13.12 Quartz Tube System That Can Be High Vacuum or Inert Atmosphere; the Coil is Around the Outside of the Tube ... 271
13.13 Schematic Illustration of Induction Brazed Joints Produced without Flux in a Controlled Atmosphere Using Sequential Brazing .. 272
13.14 Induction Brazed Carbide Inserts in Drill Shanks; the Bits on the Right Were Brazed with Flux While Those on the Left Were Brazed in an Inert Atmosphere That Does Not Require Flux .. 272
13.15 High-Vacuum Induction Brazing Application Showing the Inside of the Vacuum Chamber .. 273
13.16 Induction Brazing Operation Performed in an Inert Atmosphere .. 273
14.1 Straight-Through Conveyor-Type Continuous Belt Furnace ... 278
14.2 Continuous Humpback Belt Furnace ... 279
14.3 Gas-Fired Furnace with Two Sand-Sealed Retorts Consisting of a Hood and a Base .. 279
14.4 Electric Bell-Type Furnace (Right) Includes Three Bases, a Water-Jacketed Cooling Bell ... 279
14.5 Typical Hydrogen Vacuum (H₂V) Furnace ... 280
14.6 Batch Aluminum Brazing Furnace Used to Braze Evaporators, Radiators, and Air Charge Coolers ... 281
14.7 Cold-Wall Batch-Type Aluminum Brazing Furnace for the Fabrication of Radiators, Condensers, Evaporators, and Air Charge Coolers .. 282
14.8 Horizontal, Front-Loading Cold-Wall Vacuum Furnaces: (A) Metal Hot Zone and (B) Horizontal Vacuum Furnace System .. 282
14.9 Vertical Bottom-Loading Cold-Wall Vacuum Furnace for Brazing Large-Volume Assemblies ... 283
14.10 Gas-Fired Clamshell Brazing Furnace .. 283
14.11 Four-Stage Vacuum Pumping System (Rear View) ... 284
14.12 Semicontinuous Three-Chamber Vacuum Plant Used for the High-Temperature Brazing of Precision Brazements for the Automobile Industry 285
14.13 Front Panel of a Control Unit with Vacuum Gauges, Temperature Instrumentation, and Over-Temperature Controllers .. 286
14.14 Continuous Belt-Type Controlled-Atmosphere Furnace ... 289
14.15 Heating, Brazing, and Cooling Cycle after Pump-Down for a Typical Furnace Load with Brazing Filler Metal AWS BNi-2 ... 292
14.16 Application of AWS BAg-13a Paste to a Helmet Harness in Preparation for Furnace Brazing 297
14.17 Partial Assembly of a Cold Plate of Oxygen-Free Copper (OFHC) to Be Brazed with AWS BAg-8 ... 298
14.18 Checkerboard Fixturing of Copper Heat Exchangers .. 299
14.19 Furnace Load of Copper Brazed Oil Coolers ... 300
14.20 Vacuum System Consisting of Various Components Brazed with AWS BNi-2 302
14.21 Mass Spectrometer Gas Sampling System with Brazed Components 303
14.22 Cross-Sectional Views of Conventional and Conical Seat Rings 303
14.23 Load of Globe Valve Bodies Positioned for Brazing in a Vacuum Furnace 304
14.24 Spray Application of Brazing Filler Metal Powder and Acrylic onto Ferromagnetic Separator Screens ... 305
14.25 Tank Bottom for Ultrasonic Cleaners (72 Nosepieces) .. 305
14.26 Close-up of Nosepiece ... 306
14.27 Brazements Processed in Both Ultra-Dry Hydrogen and Vacuum Atmospheres with AWS BNi-2 Brazing Filler Metal: Metering Device (Left), Meat Chopper (Center), and Milk Claw (Right) ... 306
14.28 Fire Extinguisher Brazed with AWS BNi-2 for Use in the Lavatory of a Commercial Aircraft 307
14.29 Repeater Assembly That Required a Unique Application of Brazing Filler Metal BAu-4 ... 308
15.1 Typical Furnaces Used in Chemical-Bath Dip Brazing—(A) and (B) Are Externally Heated; (C) and (D) Are Internally Heated ... 316
15.2 Salt-Bath Furnace (Right) and Controller Cabinet (Left) .. 317
15.3 Salt Bath Furnace with Three Pairs of Over-the-Side Electrodes for Heating 317
16.1 Hand-Held Tongs Weighing Two Pounds (0.91 kg) and Measuring Approximately 15 in. (381 mm) in Length; Electric Cables Are inside the Water Line ... 331
16.2 Tongs Weighing Approximately 50 lb (22.7 kg) that Draw Power from a 25 kVA Transformer ... 331
16.3 Large Resistance Brazing Unit; the Vertical Joint Clearance between the Electrodes Measures 3 in. (76.2 mm) ... 332
16.4 Electrical Lap Joint for a Pump Stator Winding, Utilizing a 10 kVA Transformer 338
17.1 Diffusion Brazing Sequence ... 343
17.2 Diffusion Brazed Nimonic 80A Showing No Trace of the Nickel Plating or Brazing Filler Metal AWS BNi-1 ... 343
17.3 A Stress Crack in the Low-Ductile-Center Phase of a Large-Clearance Joint That Was Partially
Diffused when Brazed with AWS BNi-4 in Base Metal AISI 321 at 2050°F (1121°C) for 10 Minutes (Electrolytic Oxalic Etch), 200X (Reduced 50%) ... 345
17.4 AISI 316 (Above the Braze) Diffusion brazed to AISI 303Se (Below the Braze) with Brazing Filler Metal AWS BNi-7 (Clearance 0.001 in. to 0.000 in. [0.025 mm to 0.000 mm], Marbles Reagent Etch, 500X [Reduced]) .. 346
17.5 A 14 in. (355.6 mm) Compressor Rotor Wheel of AISI 431 Base Metal That Was Diffusion Brazed with Brazing Filler Metal AWS BNi-1 and Hardened and Tempered .. 347
17.6 A 14 in. (355.6 mm) Diffusion Brazed Compressor Rotor Wheel after Spin Testing to Destruction ... 348
17.7 Center-Phase Structure of AISI 304 in a Partially Diffusion Brazed Joint with Brazing Filler Metal AWS BNi-2 (Etched with Marbles Reagent, 500X [Reduced]) .. 348
18.1 Infrared Brazing Equipment .. 355
18.2 Test Coupons Brazed by Microwave Brazing ... 355
18.3 Chamber Used in the Microwave Brazing Process .. 356
19.1 Typical Tubular Joint Designs for Braze Welding ... 364
19.2 Typical Designs for the Braze Welding of Sheet ... 365
19.3 Studding to Increase Bond Strength along the Faying Surfaces .. 366
19.4 Typical Joint Designs for Braze Welding .. 367
20.1 Recommended Braze Joint Designs for Aluminum Alloys .. 374
20.2 Typical Self-Fixturing Configurations for the Brazing of Aluminum ... 375
21.1 Seven-Segment Tubular Transition Joint of Graphite to Hastelloy N (Ni-7Cr-16Mo-5Fe-1Si-0.8W-0.35(Al + Ti)-0.08C) .. 384
21.2 Graphite Seal Brazed to Titanium Alloy Vane with Brazing Filler Metal AWS BTi-4 (Ti-24Zr-16Cu-16Ni-0.5Mo) at 1630°F (890°C) Simultaneously with the Brazing of the Blades to the Supporting Rings ... 384
21.3 Alternate Views of a Graphite Monoblock Brazed with Molybdenum Cooling Pipe for Nuclear Reactor Divertor .. 385
21.4 Macrostructure of Brazed Joint of Tungsten (Top) and Graphite Made with the Brazing Filler Metal Ag-26.7Cu-4.5Ti .. 391
21.5 Design of Brazed Butt Joints (A, B, C) and Brazed Tube-in-Tube Joints (D, E, F, G, H, I, and J) of Graphite with Metals ... 392
21.6 Two- and Three-Step Brazing Process of Carbon-Fiber Composite (CFC) Plasma-Facing Tile to a Stainless Steel Cooler through Molybdenum .. 393
21.7 Scheme of Porosity Closure by the Copper Coating of Graphite Followed by Nickel Coating........ 395
21.8 Microstructure of Brazed Joints of Graphite with Molybdenum and Copper Produced with Brazing Filler Metal Cu-3Si-2Al-2.25Ti .. 399
21.9 Microstructure of the Brazed Joint of C/C Composite Made Using a TiSi2 Interlayer at 2530°F (1386°C) .. 399
21.10 A Double-Notched Shear Test Specimen for Brazed Graphite-to-Graphite or Graphite-to-Metal Joints .. 405
22.1 WC-Co Carbide Insert Brazed to Steel Drill Bits by High-Frequency Induction Brazing Using Brazing Filler Metal AWS BAg-6 .. 410
22.2 Wear-Resistant Ti(C,N)-(Ni, Mo) Cermet Tips Brazed to Turbine Blade Large Edge Shelf by Electron Beam Heating in Vacuum at 1180°C (2156°F) Using Brazing Filler Metal Ni-20Cr-11Mn-4Fe-4.5Nb-6Si .. 416
22.3 Sandwich Brazing Assembly for Three-Layer Brazing Filler Metal .. 422
22.4 Cemented Carbide Inserts Brazed with AWS BCu-1 Brazing Filler Metal around the Steel Part 424
22.5 Single Piece of Carbide Cannot Be Brazed Properly to Both Surfaces A and B; Two-Piece Construction Permits Each to Seat Properly .. 424
22.6 (A) Tip Cannot Fit All Three Shoulder Surfaces; (B) Redesign of Nonconflicting Shoulders Permits Proper Brazing; and (C) Removal of Steel Shoulder and Brazing Only on the Bottom
22.7 Multiple Inserts Prevent Braze Strain Cracks ... 424
22.8 (A) Use of Stop-Off Paint to Inhibit Braze and (B) Relief Slot to Reduce Brazing Strain 424
22.9 Redesign for a Single Braze Surface to Avoid Enclosing Carbide in a Steel Slot: (A), (B),
and (C) Illustrate Improper Design; (D), (E), and (F) Illustrate Correct Design 425
22.10 Three Methods of Counter-Straining to Overcome the Curvature of the Assembly due to
Brazing Strains ... 426
22.11 Methods of Fixturing of Carbide Inserts to the Steel Shank for Brazing: (A) Steel or Nichrome
Wire; (B) Coining and Wedges; (C) and (D) Technological Gaskets; and (E) Technological Wall
.. 429
22.12 The Relative Positions of Inductors and Carbide Tools during Induction Brazing [Sizes Are
Shown in mm (1 mm = 0.04 in.)] ... 432
22.13 Design of an Electric Resistance Machine For Brazing Carbide Tips to Circular Steel Saws
and Mills: (1) Steel Saw, (2) Machine Stand, (3) Saw Holder, (4) Carbide Tip, (5) Electrode
Stand, (6) Electrode Holder, (7) Electrode, and (8) Transformer ... 433
22.14 Diagrams of Residual Stresses (in MPa) in the Surface Layer of the Carbide WC-8Co Insert
Brazed to Tool Steel Drilling Crown with Yellow Brass as a Brazing Filler Metal: (A) Slow
Cooling in Air, and (B) Fast Cooling in Water .. 436
22.15 Diagrams of Residual Stresses (in MPa) in the Carbide WC-4Co, WC-15TiC-6Co, and
WC-6TiC-9Co Inserts Brazed To Steel ANSI 1045 with Yellow Brass as a Brazing Filler
Metal at the Carbide-To-Steel Thickness Ratios 1:1, 1:2, and 1:3 .. 437
22.16 Examples of Visual Quality Control of Cemented Carbide Tip Brazed Joints: (A) Bubbles in
the Joint Due to Overheating (Zinc Boiling) during Induction Brazing; (B) Uneven Flow of the
Brazing Filler Metal on the Steel Surface. This Pattern Usually Indicates a Dirty Steel Surface or
Insufficient Flux; (C) Good Quality Brazed Joint. Gas Bubbles on the Steel Surface Are Not
Qualified as Defects; (D) Discontinuities in Brazed Joint May Result From Too Large a Joint
Clearance between the Tip and Steel Saw, Poor Surface Preparation, or Unadjusted Geometry
of Brazed Parts .. 438
22.17 (A) A Shear Strength Specimen and (B) Scheme of Compression Used to Test the Shear
Strength of a Carbide-Steel Brazed Joint; Sizes are Shown in mm (1 mm = 0.04 in.) 439
22.18 TiN-Coated Tool Steel Punches with Cemented Carbide Tips Brazed by Cu-Mn-Ni Filler
Metal; Punches Are Heat Treated after Brazing to Recover the Steel Hardness 441
22.19 Thin Coating Cross Section of Tungsten Carbide Infiltration Brazed by the Slurry Method
(Modified S2 Tool Steel, Brazed in Hydrogen Belt Furnace, No Etchant, Back-Scattered
Electron Image) ... 442
22.20 Schematic of the Fleece Process .. 443
22.21 Thin-Coating Cross Section of WC Infiltration Brazed with Ni-Cr-B Eutectic Brazing
Filler Metal; Modified S2 Tool Steel Brazed in Hydrogen Belt Furnace 444
23.1 Relationship of Time at Temperature to the Changes in Malleable Iron; Inset (A) Depicts
a Typical Original Microstructure .. 452
23.2 Schematic of the Brazing of Dissimilar Metals: (A) Preplaced Brazing Filler Metal, Class 35
Cast Iron, and Steel Casting and (B) Cross-Sectional View of As-Brazed Joint 454
23.3 (A) Cross Section of the As-Brazed Joint between Cast Iron and Steel and (B)
Photomicrograph Showing Dissolution of the Base Metal .. 454
23.4 Automotive Engine Block Flanges Brazed with AWS BNi-2 without Precleaning 455
23.5 Steel Sprocket Brazed to a Cast Iron Hub ... 455
23.6 Steel Tubes Brazed to a Malleable Iron Header ... 455
23.7 Cast Iron Fittings Brazed to Steel Tubing ... 455
23.8 Steel Tubing Brazed to Cast Iron Base ... 455
24.1 Examples of Ceramic-to-Metal Brazed Joints .. 460
24.2 Schematic Comparison of the Mo-Mn Process and the Active Filler Metal Brazing
Technique for the Brazing of Ceramics .. 463
24.3 Shaft of PY6 (Si₃N₄) Brazed to 38Ni-42Fe-13Co-4.7Nb-1.5Ti-0.4Si with a Brazing Filler Metal of AWS BVAu-7 (Au-25Pd-25Ni) .. 465
24.4 Results of a Residual Stress Analysis for a Si₃N₄-to-Metal Joint; Contour Plot of the Maximum Principal Stress [in pascals (Pa) \(1.45 \times 10^{-7}\) ksi] at 68°F (20°C) in the Vicinity of the Joint .. 466
24.5 Examples of Several Ceramic-to-Metal Designs: (A) Butt and Lap Seal Joints; (B) Joints for Transitions to Thick Metal Components; and (C) Backup of Metal Seal with Blank Ceramic .. 466
24.6 Scanning Electron Microscopy (SEM) Images Illustrating Ti Scavenging Problems Encountered with the Use of an Active Brazing Filler Metal 63Ag-35.25Cu-1.75Ti for an Alumina Ceramic/Fe-29Ni-17Co Tensile-Button Brazed Joint: (A) Low Magnification View of a Nonhermetic Joint. Note the Lacework Phase Apparent in the Brazed Joint Near the Fe-29Ni-17Co Interlayer. Electron Microprobe Analysis Identifies this Lacework Phase as an (Fe, Ni, Co)₃Ti Intermetallic Compound; (B) Higher Magnification Detail [see Box in (A)] of a Nonhermetic Region Along the Alumina/Braze interface. Note the Porosity and the Intermittent Nature of the Reaction Layer; and (C) A Hermetic Brazed Joint Should Have a Continuous Reaction Layer at the Braze/Ceramic Interface, as Shown, and a Reduced Incidence of the Lacework Phase from the Fe-29Ni-17Co Interlayer (Not Shown) 468
25.1 Copper Brazed with Brazing Filler Metal BCuP-3 (120X, Reduced 20% on Reproduction) 480
25.2 Phases Present in Copper Brazed with Brazing Filler Metal BCuP-3: Copper (Light Gray); Cu₃P Compound (Dark Gray); and Ternary Eutectic (Fine Structure) (1000X, Reduced 20% on Reproduction) ... 481
25.3 Strength of Deoxidized Copper Lap Joint Brazed with Brazing Filler Metal BCuP-3 and Various Overlap Ratios ... 482
25.4 Stress Rupture Strength of Copper Brazed with Several Brazing Filler Metals Using Modified Plug and Ring Creep Specimens as a Function of Annealing Time; at 77°F and 260°F (25°C and 127°C), Failures Were Largely in the Copper .. 483
25.5 Comparison of Torsional Fatigue Strengths of Two Brazing Filler Metals; Joint Clearances from 0.003 in. to 0.11 in. (0.76 mm to 0.279 mm) Result in Little Difference in Fatigue Strength ... 483
26.1 Furnace Brazed Alloy Tool Steel .. 495
26.2 Alloy Tool Steel Assembly .. 495
27.1 Brazed Joint in AZ31B Base Metal (65X) ... 507
27.2 Torch Brazing of a Magnesium Hydraulic Lift Float ... 507
27.3 Longitudinal Section of a Completed Float .. 507
27.4 Magnesium Battery Container: (A) Details of the Assembly and the Steel Brazing Fixture; (B) Alternate View; and (C) Container Following Brazing and Flux Removal ... 508
27.5 Dip Brazed Magnesium Microwave Antenna: (A) Completed Brazement; (B) Details of the Assembly and Stainless Steel Fixture; and (C) Assembly after Flux Removal ... 509
29.1 Brazed Electrical Contacts ... 523
29.2 Dental Bridge Fixed into the Investment, Ready to be Dewaxed and Preheated for High-Temperature Brazing ... 526
29.3 Torch Soldering of the Invested Dental Bridge ... 526
29.4 Dental Bridge is Removed from the Investment after Brazing .. 527
29.5 Front and Rear Views of Completed Dental Bridge .. 527
30.1 A Diffusion Brazed Joint in Ti-AL1-Mo-1V Alloy Made with a Thin Copper Interlayer (500X) ... 532
30.2 Large Fan Turbojet Engine with Brazed Sheet Metal Vanes .. 539
30.3 Lightweight Titanium Honeycomb Sandwich Panel for a Supersonic Plane Wing 540
30.4 Titanium Alloy Honeycomb Rear Fan Case for a Jet Engine ... 541
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soaked for 5 Hours at 1950°F (1065°C) (275X Magnification)</td>
<td>604</td>
</tr>
<tr>
<td>34.20 Brazed Heat Exchanger End Closure Designs: (A) Solid Bar Design and (B) Hollow Tube and Channel Bar Designs</td>
<td>606</td>
</tr>
<tr>
<td>35.1 Strength of Deoxidized Copper Lap Joints Brazed with Brazing Filler Metal BCuP-3 and Various Overlap Ratios</td>
<td>612</td>
</tr>
<tr>
<td>35.2 Manual Brazing of Pipe Using Oxyfuel Gas and Face-Fed Brazing Filler Metal</td>
<td>619</td>
</tr>
<tr>
<td>35.3 Radiograph of a Copper Tube Brazed to a Wrought Copper Fitting with Brazing Filler Metal 5Ag-5P-80Cu</td>
<td>621</td>
</tr>
<tr>
<td>35.4 Radiograph of a Copper Tube 2.5 in. (63.5 mm) in Diameter Brazed to a Wrought Copper Fitting with Brazing Filler Metal 50Ag-Cu-Cd-Zn</td>
<td>621</td>
</tr>
<tr>
<td>35.5 Radiograph of a Copper Tube 0.75 in. (19.05 mm) in Diameter Brazed to a Cast Brass Fitting with Brazing Filler Metal 50Ag-Cu-Cd-Zn</td>
<td>621</td>
</tr>
<tr>
<td>36.1 Microstructure of PCD-Cemented Carbide Joint Brazed in Vacuum at 1688°F to 1796°F (920°C to 980°C) Using Brazing Filler Metal Cu-Sn-Ti</td>
<td>630</td>
</tr>
<tr>
<td>36.2 Diamond Grit Clearance Achieved by Different Production Methods for Abrasive Tools</td>
<td>631</td>
</tr>
<tr>
<td>36.3 Different Formation Patterns of Diamond Grits at Different Thicknesses of the Brazing Filler Metal Layer</td>
<td>632</td>
</tr>
<tr>
<td>36.4 Design of Typical Oil Well Drill Crown Equipped with Brazed PCD/Cemented Carbide Tips</td>
<td>635</td>
</tr>
</tbody>
</table>

C.1 Thermal Expansion vs. Temperature | 668 |
C.2 Thermal Expansion vs. Temperature | 669 |
C.3 Thermal Expansion vs. Temperature | 670 |
C.4 Thermal Expansion vs. Temperature | 671 |
C.5 Thermal Expansion vs. Temperature | 672 |
C.6 Thermal Expansion vs. Temperature | 673 |
C.7 Thermal Expansion vs. Temperature | 674 |
C.8 Thermal Expansion vs. Temperature | 675 |
C.9 Thermal Expansion vs. Temperature | 676 |
C.10 Thermal Expansion vs. Temperature | 677 |
C.11 Thermal Expansion vs. Temperature | 678 |
CHAPTER 1

BASICS OF BRAZING

Prepared by:
C. A. Paponetti
Expert Brazing & Heat Treating, Incorporated

M. Sapp
NAVAIR—Cherry Point

Contents
Introduction 2
Historical Perspective 3
Physics of Brazing 6
Factors Controlling the Properties of the Brazement 9
The Five Elements of Brazing 12
Bibliography 20
Suggested Reading List 20

Photograph courtesy of The Gold Bulletin
The process of brazing that we know today began as an ancient art. Through our increased understanding of the nature and behavior of materials, this art evolved into technology and science. In a very general sense, brazing is a joining process that relies on the melting, flow, and solidification of a brazing filler metal to form a leak-tight seal, a strong structural bond, or both between materials. The process is unique in that this metallurgical bond is formed by melting the brazing filler metal only; the components being joined undergo no melting.

Brazing is a well-established commercial process capable of producing strong joints. It is widely used in industry because, in large part, it is capable of joining most metallic and ceramic materials. It is a versatile process that can be performed using manual techniques as well as automated production modes. Brazing lends itself to the production of large assemblies and assemblies composed of dissimilar metals. Brazing produces a tiny, clean fillet in contrast to the irregular bead made by welding, an advantage when appearance is critical. One of the main advantages of brazing is usually associated with cost savings. High production processes adapt well to today’s improved processes. Brazing especially adapts to large production quantities as well as single individual quantities.

The term brazing refers, in fact, to a group of processes. The American Welding Society (AWS) defines brazing (B) as a group of joining processes that produce the coalescence of materials by heating them to the brazing temperature in the presence of a brazing filler metal that has a liquidus temperature above 840°F (450°C) and below the solidus temperature of the base materials. The brazing filler metal is distributed between the closely fitted faying surfaces of the joint by capillary action.\(^1,2\) The term brazing temperature refers to the temperature to which a material is heated to enable the brazing filler metal to spread and adhere to, or wet, the base metal and form a brazed joint.\(^3\)

This definition serves to distinguish brazing from the other joining processes of soldering and welding. Brazing and soldering share many important features, but the term brazing is used to refer to the joining processes performed above 840°F (450°C), while soldering refers to the joining processes performed below this temperature. Brazing differs from welding in that in brazing the intention is to melt the brazing filler metal, not the base materials. In welding, both the brazing filler metals and the base metals are melted to effect the coalescence of materials.

Several factors influence the quality of the brazed joint. To achieve a good joint using any of the brazing processes, the components to be joined must be properly cleaned and protected from excessive oxidation by fluxing or the use of a controlled atmosphere. The assembly must be designed so that when the components are properly aligned a capillary is

2. At the time of the preparation of this chapter, the referenced standards were valid. If a standard is cited without a date of publication, it is understood that the latest edition of the document referred to applies. If a standard is cited with the date of publication, the citation refers to that edition only, and it is understood that any future revisions or amendments to the code or standard are not included; however, as standards undergo frequent revision, the reader is encouraged to consult the most recent edition.