Specification for
Torch Soldering

1st Edition

Prepared by the
American Welding Society (AWS) C3 Committee on Brazing and Soldering

Under the Direction of the
AWS Technical Activities Committee

Approved by the
AWS Board of Directors

Abstract

This specification describes relevant equipment, fabrication procedures, and quality (inspection) requirements for the torch soldering of materials. This document includes criteria for classifying torch-soldered joints based on loading and the consequences of failure and quality assurance criteria defining the limits of acceptability in each class.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. Users should ensure that they have the latest edition.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

Finally, the AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS C3 Committee on Brazing and Soldering. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS C3 Committee on Brazing and Soldering and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS C3 Committee on Brazing and Soldering to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
This page is intentionally blank.
Personnel

AWS C3 Committee on Brazing and Soldering

R. W. Smith, Chair
G. L. Alexy, 1st Vice-Chair
C. M. Volpe, 2nd Vice-Chair
S. N. Borrero, Secretary

K. Allen
R. Aluru
B. Barten
D. W. Bucholz
D. E. Budinger
C. F. Darling
M. Eliades
W. J. Engeron
S. L. Feldbauer
L. H. Flasche
Y. Flom
D. Fortuna
B. Freund
Y. Gao
P. Gorman
R. A. Gourley
S. R. Hazelbaker
T. P. Hirthe
K. Holko
F. M. Hosking
J. R. Jachna
A. N. Jain
D. A. Javernick
G. F. Kayser
E. Liguori
J. A. Liguori
M. J. Lucas, Jr.
J. C. Madeni
R. P. McKinney
W. Miglietti
C. R. Moyer
T. Oyama
M. Pohlman
A. Rabinkin
J. P. Sands
A. E. Shapiro
P. T. Vianco
C. Walker
L. A. Wolfgram
R. R. Xu
H. Zhao

S-Bond Technologies
The Prince & Izant Company
Senior Aerospace
American Welding Society
Bellman-Melcor
Progress Energy
Delphi Thermal & Interior
Los Alamos National Laboratory
General Electric Aviation
Lucas-Milhaupt, Incorporated
Solvay Fluorides
Engeron Technology Group
Abbott Furnace Company
Foresite, Incorporated
NASA Goddard Space Flight Center
Sulzer Metco (U.S.), Incorporated
Millennium Industries
Pratt & Whitney Rocketdyne
SANDIA National Laboratories
Curtiss-Wright
The Prince & Izant Company
Kru-Mar Manufacturing Services
Holko Consulting
Sandia National Laboratories
Modine Manufacturing Company
Lucas-Milhaupt, Incorporated
Los Alamos National Laboratory
Pratt & Whitney Rocketdyne
Scarrott Metallurgical
SpaceX
Belcan Engineering
Colorado School of Mines
The Prince & Izant Company
Power Systems Manufacturing, LLC
Bodycote Thermal Processing
WESGO Metals
Honeywell Aerospace
Metglas, Incorporated/Hitachi Metals
Wolverine Joining Technologies
Titanium Brazing, Incorporated
Sandia National Laboratories
Sandia National Laboratories
Lucas-Milhaupt, Incorporated
Rolls-Royce Corporation
Creative Thermal Solutions
Advisors to the AWS C3 Committee on Brazing and Soldering

A. Belohlav
Lucas-Milhaupt, Incorporated

S. S. Bhargava
American Axle & Manufacturing Company

S. Christy
Pratt and Whitney

N. C. Cole
NCC Engineering

C. E. Fuerstenau
Lucas-Milhaupt, Incorporated

P. K. Gupta
Honeywell Aerospace

M. J. Higgins
Pratt and Whitney

D. Kay
Kay & Associates

M. J. Kuta
Lucas-Milhaupt, Incorporated

H. Lichtenberger
Williams Advanced Materials

E. Lugscheider
Aachen University of Technology

W. D. Rupert
Wolverine Joining Technologies

AWS C3B Subcommittee on Soldering

C. F. Darling, Chair
Lucas-Milhaupt, Incorporated

S. N. Borrero, Secretary
American Welding Society

G. L. Alexy
The Prince and Izant Company

L. H. Flasche
Foresite, Incorporated

F. M. Hosking
Sandia National Laboratories

J. C. Madeni
Colorado School of Mines

A. Rabinkin
Metglas, Incorporated/Titanium Brazing

J. Sands
Wolverine Joining Technologies

A. E. Shapiro
Titanium Brazing, Incorporated

R. W. Smith
S-Bond Technologies

P. T. Vianco
Sandia National Laboratories

C. Volpe
Senior Aerospace

C. Walker
Sandia National Laboratories

L. Wolfgram
Lucas-Milhaupt, Incorporated

Advisors to the AWS C3B Subcommittee on Soldering

N. C. Cole
NCC Engineering

C. E. Fuerstenau
Lucas-Milhaupt, Incorporated

P. K. Gupta
Honeywell Aerospace

T. P. Hirthe
Kru-Mar Manufacturing Services

M. J. Lucas, Jr.
Belcan Engineering

M. J. Pohlman
Honeywell Aerospace
Foreword

This foreword is not part of AWS C3.11M/C3.11:2011, Specification for Torch Soldering, but is included for informational purposes only.

This document is a response to the need within the structural soldering community to develop generalized specifications that are applicable to the making of solder filler metal joints. To this date, the only such related document is ASTM B 828-02, Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings. The ASTM specification is an adaptation of the Application Data Sheet entitled Soldering and Brazing Copper Tube and Fittings published by the Copper Development Association, Inc. Although technically sound, the document is restrictive in its scope of application. In other engineering applications, e.g., soldering with an iron, furnace soldering, infrared soldering, etc., there are no equivalent specifications; therefore, it is important to the joining community that appropriate specifications be developed and approved which address the technologies associated with structural soldering.

This document is the first in a future series of AWS specifications that addresses materials and process for soldering technology.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS C3 Committee on Brazing and Soldering, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
This page is intentionally blank.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>v</td>
</tr>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>1. General Requirements</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Units of Measurement</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Safety</td>
<td>1</td>
</tr>
<tr>
<td>2. Normative References</td>
<td>2</td>
</tr>
<tr>
<td>3. Terms and Definitions</td>
<td>3</td>
</tr>
<tr>
<td>4. Classification of Soldered Joints</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Method of Classification</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Classes of Soldered Joints</td>
<td>4</td>
</tr>
<tr>
<td>5. Process Requirements</td>
<td>4</td>
</tr>
<tr>
<td>5.1 Process Description</td>
<td>4</td>
</tr>
<tr>
<td>5.2 Equipment</td>
<td>4</td>
</tr>
<tr>
<td>5.3 Materials</td>
<td>5</td>
</tr>
<tr>
<td>5.4 Procedure Requirements</td>
<td>5</td>
</tr>
<tr>
<td>5.5 Qualification</td>
<td>7</td>
</tr>
<tr>
<td>5.6 Safety and Health</td>
<td>7</td>
</tr>
<tr>
<td>6.1 Responsibility for Inspection</td>
<td>7</td>
</tr>
<tr>
<td>6.2 Requirements for Compliance</td>
<td>7</td>
</tr>
<tr>
<td>6.3 Sequence of Inspection and Manufacturing Operations</td>
<td>7</td>
</tr>
<tr>
<td>6.4 Required Inspection of Soldered Joints</td>
<td>7</td>
</tr>
<tr>
<td>6.5 Acceptance Criteria</td>
<td>9</td>
</tr>
<tr>
<td>6.6 Process Completion</td>
<td>11</td>
</tr>
<tr>
<td>Annex A (Informative)—Informative References</td>
<td>13</td>
</tr>
<tr>
<td>Annex B (Informative)—Guidelines for the Preparation of Technical Inquiries</td>
<td>15</td>
</tr>
<tr>
<td>List of AWS Documents on Brazing and Soldering</td>
<td>17</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dimensions of Internal Discontinuities as they pertain to Radiographic and Ultrasonic Inspection Specifications of a Butt Joint Configuration</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Dimensions of Internal Discontinuities as they pertain to Radiographic and Ultrasonic Inspection Specifications of a Single Lap Joint Configuration</td>
<td>11</td>
</tr>
</tbody>
</table>
Specification for Torch Soldering

1. General Requirements

1.1 Scope. This specification presents the minimum process and quality requirements for the torch soldering of ceramics, precious metals, and refractory metals, as well as the alloys of copper (Cu), iron (Fe), nickel (Ni), aluminum (Al), magnesium (Mg), tin (Sn), lead (Pb), and zinc (Zn).

The purpose of this specification is to standardize torch soldering process requirements that will ensure that soldered joints attain the quality level designated by the application. This document establishes the minimum requirements for processes using a minimum amount of explanatory information so as to limit any ambiguity. This document assigns responsibility for soldered joint quality to the Organization Having Quality Responsibility and permits that organization to modify requirements as necessary. However, this specification requires that proper documentation be developed and archived by that organization, which explains the basis and specific details of any such modifications.

1.2 Units of Measurement. This standard makes use of both the International System of Units (SI) and U.S. Customary Units. The latter are shown in brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore each system must be used independently.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed herein.

Safety and Health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes

(2) AWS Safety and Health Fact Sheets

(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Material Safety Data Sheets supplied by the materials manufacturers

(2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.