Abstract

This specification provides the minimum fabrication, equipment, and process procedure requirements, as well as inspection requirements for the induction brazing of steels, copper, copper alloys, and heat- and corrosion-resistant alloys and other materials that can be adequately induction brazed (the induction brazing of aluminum alloys is addressed in AWS C3.7M/C3.7, Specification for Aluminum Brazing). This specification provides criteria for classifying induction brazed joints based on loading and the consequences of failure and quality assurance criteria defining the limits of acceptability in each class. The specification defines acceptable induction brazing equipment, materials, and procedures, as well as the required inspection for each class of joint.
Photocopy Rights. No portion of this standard may be reproduced, stored in a retrieval system, or transmitted in any form, including mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

Authorization to photocopy items for internal, personal, or educational classroom use only or the internal, personal, or educational classroom use only of specific clients is granted by the American Welding Society provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, tel: (978) 750-8400; Internet: <www.copyrighth.com>.
Statement on Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. This standard may also be corrected through publication of amendments or errata. It may also be supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda are posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

The AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so. On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 NW 36 St, #130, Miami, FL 33166 (see Annex B).

With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS C3 Committee on Brazing and Soldering. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS C3 Committee on Brazing and Soldering and the author of the comments will be informed of the Committee’s response to the comments.

Guests are invited to attend all meetings of the AWS C3 Committee on Brazing and Soldering to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166.
Personnel (Amendment)

AWS C3 Committee on Brazing and Soldering

G. L. Alexy, Chair
Alexy Metals
C. M. Volpe, 1st Vice Chair
Senior Aerospace – Metal Bellows Division
R. R. Xu, 2nd Vice Chair
Rolls-Royce Corporation
J. R. Douglass, Secretary
American Welding Society
D. E. Budinger
General Electric Aviation
J. A. Bush
The Prince & Izant Companies
W. M. Coughlan
Metglas, Incorporated
R. P. Detty
Ajax Tocco Magnethermic
P. Ditzel
Parker Hannifin
W. J. Engeron
Engeron Technology Group
S. L. Feldbauer
Abbott Furnace Company
Y. Gao
Aerojet Rocketdyne
R. A. Gourley
Curtiss-Wright
T. D. Grohoske
University of Dayton Research Institute
S. R. Hazelbaker
Consultant
T. P. Hirthe
Kru-Mar Manufacturing Services
K. H. Holko
Holko Consulting
J. R. Jachna
Modine Manufacturing Company
D. A. Javernick
Los Alamos National Laboratory
G. F. Kayser
Aerojet Rocketdyne
J. A. Liguori
SpaceX
J. C. Madeni
Lucas-Milhaupt, Incorporated
O. Márs
Höganäs AB
R. P. McKinney
Harris Products Group
W. Miglietti
ProEnergy
T. Oyama
WESGO Metals
M. E. Paponetti
Solar Atmospheres
M. J. Pohlman
Consultant
T. C. Profughi
Hi TecMetal Group, Incorporated
A. Rabinkin
Brazing and Joining Consultant, LLC
S. S. Rajan
Raytheon Space and Airborne Systems
R. X. Reed
Lucas-Milhaupt, Incorporated
J. P. Sands
Bellman-Melcor, LLC
A. E. Shapiro
Titanium Brazing, Incorporated
R. W. Smith
S-Bond Technologies
M. Stroiczek
Höganäs GmbH
P. T. Vianco
Sandia National Laboratories
C. Walker
Sandia National Laboratories
M. Weinstein
Wall Colmonoy Corporation
H. Zhao
Creative Thermal Solutions
Advisors to the AWS C3 Committee on Brazing and Soldering

B. Barten
J. J. Bassindale
A. Belohlav
S. S. Bhargava
D. W. Bucholz
N. C. Cole
C. F. Darling
Y. Flom
B. Freund
C. E. Fuerstenau
P. K. Gupta
A. N. Jain
D. Kay
E. Liguori
W. J. Loofboro
J. G. Matteau

Delphi Thermal & Interior
Woodward, Incorporated
Lucas-Milhaupt, Incorporated
American Axle & Manufacturing Company
Consultant
NCC Engineering
Hayes Performance Systems
NASA Goddard Space Flight Center
Millennium Industries
Lucas-Milhaupt, Incorporated
Honeywell Aerospace
Lucas-Milhaupt, Incorporated
Kay & Associates
Consultant
Lucas-Milhaupt, Incorporated

AWS C3D Subcommittee on Brazing Specifications

C. M. Volpe, Chair
S. S. Rajan, Vice-Chair
J. R. Douglass, Secretary
D. E. Budinger
J. A. Bush
W. M. Coughlan
R. P. Detty
P. Ditzel
W. J. Engeron
S. L. Feldbauer
Y. P. Gao
R. A. Gourley
M. T. Graham
T. D. Grohoske
S. R. Hazelnaker
T. P. Hirthe
K. H. Holko
J. R. Jachna
G. F. Kayser
J. A. Liguori
J. Longabucco
J. C. Madeni
R. P. McKinney
T. Oyama
M. E. Paponetti
M. J. Pohlman
T. C. Profughi
R. X. Reed
J. P. Sands
R. W. Smith
M. Stroiczek
P. T. Vianco
C. Walker

Senior Aerospace – Metal Bellows Division
Raytheon Space and Airborne Systems
American Welding Society
General Electric Aviation
The Prince & Izant Companies
Metglas, Incorporated
Ajax Tocco Magnethermic
Parker Hannifin
The Engoron Technology Group, Incorporated
Abbott Furnace Company
Aerojet Rockeydyne
Curtiss-Wright
The Prince and Izant Company
University of Dayton Research Institute
Consultant
Kru-Mar Manufacturing Services
Holko Consulting
Modine Manufacturing Company
Aerojet Rockeydyne
SpaceX
Lucas-Milhaupt, Incorporated
Johns Manville
Harris Products Group
WESGO Metals
Solar Atmospheres
Consultant
Hi TecMetal Group, Incorporated
Lucas-Milhaupt, Incorporated
Bellman-Melcor, LLC
S-Bond Technologies
Höganäs GmbH
Sandia National Laboratories
Sandia National Laboratories
Advisors to the C3D Subcommittee on Brazing Specifications

G. L. Alexy Alexy Metals
B. Barten Delphi Thermal & Interior
J. J. Bassindale Woodward, Incorporated
N. C. Cole NCC Engineering
C. F. Darling Hayes Performance Systems
M. Eliades Solvay Fluorides
Y. Flom NASA Goddard Space Flight Center
B. Freund Millennium Industries
C. E. Fuerstenau Lucas-Milhaupt, Incorporated
P. K. Gupta Honeywell Aerospace
J. A. Jain Lucas-Milhaupt, Incorporated
E. Liguori Consultant
W. J. Loofboro Lucas-Milhaupt, Incorporated
J. G. Matteau ProTech Materials
W. Miglietti ProEnergy
H. Mizuhara Consultant
M. E. Sapp NAVAIR – In-Service Support Center
This page is intentionally blank.
Personnel (Original)

AWS C3 Committee on Brazing and Soldering

R. W. Smith, Chair S-Bond Technologies
G. L. Alexy, 1st Vice Chair Alexy Metals
C. M. Volpe, 2nd Vice Chair Senior Aerospace – Metal Bellows Division
J. R. Douglass, Secretary American Welding Society
J. J. Bassindale Woodward, Incorporated
D. E. Budinger General Electric Aviation
J. A. Bush The Prince & Izant Companies
W. M. Coughlan Metglas, Incorporated
C. F. Darling Lucas-Milhaupt, Incorporated
R. P. Detty Ajax Tocco Magnethermic
W. J. Engeron Engeron Technology Group
S. L. Feldbauer Abbott Furnace Company
Y. Flom NASA Goddard Space Flight Center
B. Freund Millennium Industries
Y. Gao Aerojet Rocketdyne
R. A. Gourley Curtiss-Wright
T. D. Grohoske General Electric Aviation
S. R. Hazelbaker Consultant
T. P. Hirthe Kru-Mar Manufacturing Services
K. H. Holko Holko Consulting
J. R. Jachna Modine Manufacturing Company
D. A. Jawernick Los Alamos National Laboratory
G. F. Kayser Aerojet Rocketdyne
J. A. Liguori SpaceX
J. Longabucco Lucas-Milhaupt, Incorporated
O. Márs Höganäs AB
J. G. Matteau Indium Corporation
R. P. McKinney Harris Products Group
W. Miglietti ProEnergy
T. Oyama WESGO Metals
M. J. Pohlman Honeywell Aerospace
T. C. Profughi Hi TecMetal Group, Incorporated
A. Rabinkin Brazing and Joining Consultant, LLC
S. S. Rajan Raytheon Space and Airborne Systems
J. P. Sands Bellman-Melcor, LLC
A. E. Shapiro Titanium Brazing, Incorporated
M. Stroiczek Höganäs GmbH
P. T. Vianco Sandia National Laboratories
C. Walker Sandia National Laboratories
M. Weinstein Wall Colmonoy Corporation
R. R. Xu Rolls-Royce Corporation
H. Zhao Creative Thermal Solutions
Advisors to the AWS C3 Committee on Brazing and Soldering

- R. Aluru, Progress Energy
- B. Barten, Delphi Thermal & Interior
- A. Belohlav, Lucas-Milhaupt, Incorporated
- S. S. Bhargava, American Axle & Manufacturing Company
- D. W. Bucholz, Consultant
- S. Christy, Pratt and Whitney
- N. C. Cole, NCC Engineering
- C. E. Fuerstenau, Lucas-Milhaupt, Incorporated
- P. K. Gupta, Honeywell Aerospace
- F. M. Hosking, Consultant
- A. N. Jain, Lucas-Milhaupt, Incorporated
- D. Kay, Kay & Associates
- E. Liguori, Consultant
- W. J. Loofboro, Lucas-Milhaupt, Incorporated
- E. Lugischer, Aachen University of Technology
- J. C. Madeni, Johns Manville
- R. X. Reed, Lucas-Milhaupt, Incorporated
- W. D. Rupert, Lucas-Milhaupt, Incorporated

AWS C3D Subcommittee on Brazing Specifications

- M. J. Pohlman, Chair, Honeywell Aerospace
- C. M. Volpe, Vice-Chair, Senior Aerospace – Metal Bellows Division
- J. R. Douglass, Secretary, American Welding Society
- J. J. Bassindale, Woodward, Incorporated
- D. E. Budinger, General Electric Aviation
- J. A. Bush, The Prince & Izant Companies
- W. M. Coughlan, Metglas, Incorporated
- C. F. Darling, Lucas-Milhaupt, Incorporated
- R. P. Detty, Ajax Tocco Magnethermic
- W. J. Engerson, The Engerson Technology Group, Incorporated
- S. L. Feldbauer, Abbott Furnace Company
- Y. Flom, NASA Goddard Space Flight Center
- B. Freund, Millennium Industries
- Y. P. Gao, Aerojet Rocketdyne
- R. A. Gourley, Curtiss-Wright
- M. T. Graham, The Prince and Izant Company
- T. D. Grohoske, General Electric Aviation
- S. R. Hazelbaker, Consultant
- T. P. Hirthe, Kru-Mar Manufacturing Services
- K. H. Holko, Holko Consulting
- J. R. Jachna, Modine Manufacturing Company
- D. J. Jossick, Lucas-Milhaupt, Incorporated
- G. F. Kayser, Aerojet Rocketdyne
- J. A. Liguori, SpaceX
- J. Longabucco, Lucas-Milhaupt, Incorporated
- R. P. McKinney, Harris Products Group
- T. Oyama, WESGO Metals
- T. C. Profughi, Hi TecMetal Group, Incorporated
- S. S. Rajan, Raytheon Space and Airborne Systems
- J. P. Sands, Bellman-Melcor, LLC
- R. W. Smith, S-Bond Technologies
M. Stroiczek Höganas GmbH
P. T. Vianco Sandia National Laboratories
C. Walker Sandia National Laboratories
R. R. Xu Rolls-Royce Corporation
H. Zhao Creative Thermal Solutions

Advisors to the C3D Subcommittee on Brazing Specifications

G. L. Alexy Alexy Metals
R. Aluru Progress Energy
B. Barten Delphi Thermal & Interior
N. C. Cole NCC Engineering
M. Eliades Solvay Fluorides
C. E. Fuerstenau Lucas-Milhaupt, Incorporated
P. K. Gupta Honeywell Aerospace
F. M. Hosking Consultant
J. A. Jain Lucas-Milhaupt, Incorporated
T. A. Kern Consultant
E. Liguori Consultant
W. J. Loofboro Lucas-Milhaupt, Incorporated
J. C. Madeni Johns Manville
W. Miglietti ProEnergy
H. Mizuhara Consultant
R. X. Reed Lucas-Milhaupt, Incorporated
W. D. Rupert Lucas-Milhaupt, Incorporated
M. E. Sapp NAVAIR – In-Service Support Center
Foreword

This foreword is not part of AWS C3.5M/C3.5:2016, Specification for Induction Brazing, but is included for informational purposes only.

This specification is one of a series prepared at the request of the Aerospace Materials Division (AMD) of the Society of Automotive Engineers (SAE) and a number of other organizations to replace the military specification MIL-B-7883, Brazing of Steels, Copper, Copper Alloys, Nickel Alloys, Aluminum, and Aluminum Alloys, which addressed all brazing processes. It became both obsolete and very cumbersome as brazing technology proliferated and became more complex.

Addressing all of the diverse brazing processes in one concise, easily understood document was found to be impractical; therefore, a series of five independent specifications on brazing have been written, all in the same format. These are AWS C3.4M/C3.4, Specification for Torch Brazing; the present document, AWS C3.5M/C3.5, Specification for Induction Brazing; AWS C3.6M/C3.6, Specification for Furnace Brazing; AWS C3.7M/C3.7, Specification for Aluminum Brazing; and AWS C3.9M/C3.9, Specification for Resistance Brazing.

The decision to subdivide the technology in this way was based on a survey of production brazing applications conducted by the AWS C3 Committee on Brazing and Soldering. The survey demonstrated that these five specifications would cover the vast majority of brazing performed today.

There is not a direct conversion of the MIL-B-7883 Grades and the AWS Classes and the quality assurance requirements differ. The cancellation of MIL-B-7883 was not intended to add additional inspection requirements to legacy hardware (i.e., MIL-B-7883 Grade B with only external inspection was not intended to become AWS Class B with internal NDT requirements). Each Organization Having Quality Responsibility must provide instructions on how or if the cancellation is to be handled for their hardware.

After the completion of the brazing specifications, it was determined that a document providing specific criteria and requirements for the application of ultrasonic testing to brazed joints was needed. Therefore, AWS C3.8M/C3.8, Specification for the Ultrasonic Pulse-Echo Examination of Brazed Joints, was written to complement this series.

This fourth edition supersedes AWS C3.5M/C3.5:2007, bearing the same title. Revisions made to this edition were coordinated with changes in AWS C3.4M/C3.4 and AWS C3.6M/C3.6, incorporating many of the improvements in the 2011 edition of AWS C3.7M/C3.7, and coordinating the wording between the three documents. Revisions were made throughout the document.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS C3 Committee on Brazing and Soldering, American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166.
This page is intentionally blank.
The following Amendment has been identified and is incorporated in this reprint.

AWS Standard: C3.5M/C3.5:2016-AMD1, Specification for Induction Brazing

Amendment Number: 1

Subject: Replace Subclause 5.5 with the following:

5.5 Qualification of Brazing Procedures and Personnel. Brazing procedures and personnel shall be qualified in accordance with AWS B2.2/B2.2M, Specification for Brazing Procedure and Performance Qualification. Requirements of the Organization Having Quality Responsibility may replace or supplement the qualification requirements of B2.2/B2.2M.

5.5.1 Production brazing shall be performed in accordance with a Brazing Procedure Specification (BPS) qualified in accordance with AWS B2.2/B2.2M, as a minimum. If the procedure consists of more than one brazing cycle for product fabrication, all cycles shall be so qualified, documented, and approved. Essential variables for qualified brazing procedures shall be as specified in AWS B2.2/B2.2M and supplemented by requirements of the Organization Having Quality Responsibility, if applicable.

5.5.2 Brazing operators shall be qualified in accordance with the applicable requirements of AWS B2.2/B2.2M.
This page is intentionally blank.
Table of Contents

Personnel .. v

Foreword ... xiii

Amendment ... xv

1. **General Requirements** ... 1
 1.1 Scope .. 1
 1.2 Units of Measurement ... 1
 1.3 Safety .. 1
 1.4 Ordering Information .. 2

2. **Normative References** .. 2

3. **Terms and Definitions** .. 3

4. **Classification of Brazed Joints** .. 3
 4.1 Method of Classification .. 3
 4.2 Class A Joints .. 4
 4.3 Class B Joints .. 4
 4.4 Class C Joints .. 4
 4.5 No Class Specified ... 4

5. **Process Requirements** .. 4
 5.1 Process Description .. 4
 5.2 Equipment ... 4
 5.3 Materials .. 6
 5.4 Procedure Requirements .. 6
 5.5 Qualification of Brazing Procedures and Personnel ... 8
 5.6 Safety and Health .. 8

6. **Quality Assurance Provisions** .. 8
 6.1 Responsibility for Inspection .. 8
 6.2 Requirements for Compliance ... 8
 6.3 Inspection Personnel Qualification .. 8
 6.4 Sequence of Inspection and Manufacturing Operations ... 9
 6.5 Required Inspection of Brazed Joints ... 9
 6.6 Acceptance Criteria .. 10
 6.7 Process Completion ... 11

Annex A (Informative)–Informative References .. 13
Annex B (Informative)–Guidelines for the Preparation of Technical Inquiries ... 15

List of AWS Documents on Brazing and Soldering .. 17
Specification for Induction Brazing

1. General Requirements

1.1 Scope. This specification provides the minimum fabrication, and quality requirements for the induction brazing of materials such as steels, copper, copper alloys, and heat- and corrosion-resistant alloys as well as other materials that can be adequately induction brazed. Note that the induction brazing of aluminum alloys is addressed in AWS C3.7M/C3.7, Specification for Aluminum Brazing.

The purpose of this specification is to standardize induction brazing process requirements and braze joint quality requirements for all applications requiring brazed joints of assured quality. This document establishes minimum requirements for processes and products with a minimum of explanatory information so that sources of ambiguity are minimized. It assigns responsibility for the ultimate quality of the brazed product to a single organization and permits that organization to modify requirements if appropriate to the application. It requires proper documentation of any such modifications.

1.2 Units of Measurement. This standard makes use of both the International System of Units (SI) and U.S. Customary Units. The latter are shown in brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore each system must be used independently.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed herein.

Safety and Health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
(2) AWS Safety and Health Fact Sheets
(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Safety Data Sheets supplied by the materials manufacturers
(2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies:

(1) United States Department of Labor, Occupational Safety & Health Administration (OSHA)
(2) Equivalent agencies of other countries and individual states

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

See 5.6 for additional safety and health information.