Recommended Practices for Heat Shaping and Straightening with Oxyfuel Gas Heating Torches
Recommended Practices
for Heat Shaping and Straightening
with Oxyfuel Gas Heating Torches

2nd Edition

Supersedes AWS C4.4/C4.4M:2004

Prepared by the
American Welding Society (AWS) C4 Committee on Oxyfuel Gas Welding and Cutting

Under the Direction of the
AWS Technical Activities Committee

Approved by the
AWS Board of Directors

Abstract

This second edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.
# Table of Contents

*Personnel* ........................................................................................................................................................................... v

*Foreword* ................................................................................................................................................................................... vii

*List of Tables* .............................................................................................................................................................................. xi

*List of Figures* ........................................................................................................................................................................... xi

1. **Scope** .................................................................................................................................................................................. 1

2. **Normative References** ........................................................................................................................................................ 1

3. **Terms and Definitions** ......................................................................................................................................................... 2

4. **Theory of Heat Shaping** ....................................................................................................................................................... 2

5. **Distortion** ............................................................................................................................................................................... 6

6. **Fundamentals and Precautions** ........................................................................................................................................ 7

7. **Equipment and Supplies** ...................................................................................................................................................... 8
   7.1 **Standard Equipment** .................................................................................................................................................. 8
   7.2 **Special Equipment** .................................................................................................................................................. 8
   7.3 **Oxygen Supply** ....................................................................................................................................................... 8
   7.4 **Fuel Supply** ............................................................................................................................................................ 8
   7.5 **Maximum Acetylene Pressure** .................................................................................................................................. 9
   7.6 **Pressure Regulators** ................................................................................................................................................ 9
   7.7 **Hoses and Fittings** .................................................................................................................................................. 11
   7.8 **Heating Torches** ................................................................................................................................................... 12
   7.9 **Heating Tip/Head** ................................................................................................................................................ 12
   7.10 **Maintenance of Heating Tips or Heads** ................................................................................................................. 12
   7.11 **Personal Protective Equipment (PPE)** ................................................................................................................... 13
   7.12 **Safe Use, Handling, and Storage of Gas Cylinders** .............................................................................................. 14

8. **Startup and Shutdown Procedure** ................................................................................................................................ 15
   8.1 **Setting Up Equipment** ........................................................................................................................................ 15
   8.2 **Lighting the Torch** ................................................................................................................................................ 16
   8.3 **Equipment Shutdown** ....................................................................................................................................... 17
   8.4 **Equipment Not in Use** ....................................................................................................................................... 17
   8.5 **Reuse of Equipment Already Connected** ............................................................................................................. 17

9. **Flame Adjustment** ............................................................................................................................................................... 17
   9.1 **Types of Flames** ............................................................................................................................................... 17
   9.2 **Flashback Arrestors and Check Valves** ..................................................................................................................... 18

10. **General Technique** ........................................................................................................................................................... 19

11. **Procedures for General Applications** ............................................................................................................................. 20
   11.1 **Mechanically Restrained Structures** .................................................................................................................. 20
   11.2 **Freestanding Unrestrained Members** .................................................................................................................... 21
   11.3 **Shaping of Plate** ............................................................................................................................................. 23
   11.4 **Flattening Plates** ............................................................................................................................................. 23
   11.5 **Plate Tightening** .......................................................................................................................................... 23
# 12. Procedures for Specific Applications

- **12.1 Bending of Flat Bar, V Heat** ................................................................. 23
- **12.2 Bending of Channel, V Heat** ................................................................. 26
- **12.3 Bending of Beams** .................................................................................. 26
- **12.4 Bending of Angle** .................................................................................. 27
- **12.5 Bending of T Sections** ......................................................................... 27
- **12.6 Bending of Plate** .................................................................................... 30
- **12.7 Pipe** ........................................................................................................ 30

# 13. Line Heating and Flame Bending in Shipyards

- **13.1 Background** ......................................................................................... 30
- **13.2 Basic Concepts** .................................................................................... 32
- **13.3 Planning and Methods** ......................................................................... 32
- **13.4 Recommended Practices** ..................................................................... 33
- **13.5 Code Compliance** ................................................................................ 33
- **13.6 Conclusions** ......................................................................................... 33

# 14. Safety and Health

Annex A (Informative)—Informative References .................................................. 35
Annex B (Informative)—Fuel Gas Withdrawal Rates ............................................. 39
Annex C (Informative)—Guidelines for the Preparation of Technical Inquiries ................................................................. 41
List of AWS Documents on Oxyfuel Gas Welding and Cutting .................................................. 43
List of Tables

Table | Page No.
---|---
B.1 Acetylene Withdrawal | 39
B.2 Methylacetylene-Propadiene Stabilized (MPS) Withdrawal | 39
B.3 Propylene Withdrawal | 40
B.4 Propane Withdrawal | 40

List of Figures

Figure | Page No.
---|---
1 Shortening of Bar from Application of Heat | 3
2 Variation in Yield Strength and Modulus of Elasticity with Respect to Temperature for ASTM A 36 Steel | 4
3 Imperceptible Welding Distortion of a Thick Steel Plate | 5
4 Welding Distortion of a Thin Steel Plate | 7
5 Oxygen Cylinder | 9
6 Typical Fuel Gas Cylinders | 9
7 Pressure Regulators | 10
8 Hoses and Fittings | 11
9 Manual Heating Torch | 12
10 Multi-Flame Heating Heads | 13
11 Water-Cooled Flame Hardening Head | 13
12 Carburizing Flame | 18
13 Neutral Flame | 18
14 Oxidizing Flame | 18
15 Basic Heating Patterns | 20
16 Externally Restrained Plate | 21
17 Externally Restrained Beam | 21
18 V Shape Heat Pattern for Straightening or Shaping a Flat Bar | 22
19 Dimensions for Calculating Upset | 23
20 Behavior of ASTM A 36 Steel Perfectly Confined in One Axis as a Function of Temperature | 24
21 Heat Patterns in Rolled Shapes | 25
22 Spot Heat Repair of Dent in Plate | 25
23 Spot Heat Repair (Tightening) on Irregular Plate | 26
24 Application of V Shape Heat Pattern and Direction of Movement | 26
25 Bending of Channel Toward Flange | 27
26 Bending of Channel Toward Web | 27
27 Bending of Channel Toward Open Side | 27
28 Bending of Beam Toward Open Side | 28
29 Bending of Beam Toward Flange | 28
30 Bending of Angle Toward Face of Leg | 28
31 Bending of Angle Toward Edge of Leg | 29
32 Bending of T Section Toward Web | 29
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Bending of T Section Toward Flange</td>
</tr>
<tr>
<td>34</td>
<td>Bending of Plate</td>
</tr>
<tr>
<td>35</td>
<td>Bending of Plate (More Movement)</td>
</tr>
<tr>
<td>36</td>
<td>Decreasing Diameter of Heavy Wall Pipe</td>
</tr>
<tr>
<td>37</td>
<td>Straightening of Pipe or Round</td>
</tr>
<tr>
<td>38</td>
<td>Straightening Pipe or Round Stock—V Shape Heating with Serpentine Path</td>
</tr>
<tr>
<td>39</td>
<td>Straightening Pipe or Round Stock—V Shape Heating with Line Heating Pattern</td>
</tr>
</tbody>
</table>
1. Scope

This publication describes some causes of distortion and corrective actions through the use of heat. It also describes some heat shaping techniques and the direction of movement expected in the heated metal. Equations are provided to aid in estimating the amount of movement for a given heating technique. The methods discussed are specifically applicable to ferrous metals, but many of the methods can be applied to nonferrous metals as well. For a more comprehensive description of specific applications, see Annex A, Informative References.

Heat has been used to shape and straighten structural elements in bridges, buildings, and marine constructions for over a hundred years. Since the late 1930s, the use of oxyfuel gas torches to do this work has become more prevalent. This publication is a recommended practice for using the torch process for work on bridges and buildings, and to some extent, shipbuilding.

Mechanical forces in fabrication and erection, forces occurring in service, accidental impacts from external forces, fire, and explosion, all cause stress in a structural member or a part of a member. If that stress exceeds the elastic limit of the material, distortion will occur, and the member will not conform to its desired shape. Heat shaping and straightening is an economical method to produce the desired movement to bring the member into conformance.

The shipbuilding industry throughout the world has taken heat shaping to new heights in shaping technology. Particularly, the use of line heating to shape complex curves in hull structures has become an integral part of a group technology in shipbuilding which also includes product work packages and accuracy control.

Basically, straightening and shaping involves controlled thermal expansion and contraction of a structural element. The method, location, and shape of the heat application are covered briefly in this publication. This recommended practice is limited to fundamentals and simple applications (see Annex A for additional information).

This standard makes use of both U.S. Customary Units and the International System of Units (SI). The latter are shown within brackets [ ] or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.

Safety and health issues may not be fully addressed by this standard. Users of this standard should consult ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes, applicable federal, state, and local regulations and other relevant documents concerning safety and health issues not addressed herein.

2. Normative References

The following standard contains provisions, which, through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

AWS documents: 1

AWS A3.0, Standard Welding Terms and Definitions, Including Terms for Adhesive Bonding, Brazing, Soldering, Thermal Cutting, and Thermal Spraying; and

AWS F4.1, Recommended Safe Practices for Preparation for Welding and Cutting of Containers and Piping.

Other documents:

ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes; 2

1 AWS standards are published by the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
2 ANSI Z49.1 is published by the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.