Abstract

This is the U.S. national adoption of ISO 9013:2002, Thermal cutting — classification of thermal cuts — Geometric product specification and quality tolerances. It includes three national annexes (Criteria for Describing Oxygen-Cut Surfaces with a photograph of a Surface Roughness Guide, a list of reference documents available for individuals involved with Oxyfuel Gas Welding and Cutting, and a guide for the preparation of technical inquiries to AWS) as well as a list of published AWS documents on Oxyfuel Gas Welding and Cutting.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 Doral Blvd., Suite 130, Doral, FL 33166 (see Annex E). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS C4 Committee on Oxyfuel Gas Welding and Cutting. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS C4 Committee on Oxyfuel Gas Welding and Cutting and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS C4 Committee on Oxyfuel Gas Welding and Cutting to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
Personnel (Reaffirmation)

AWS C4 Committee on Oxyfuel Gas Welding and Cutting

M. J. Hogan, Chair
Harris Products Group, A Lincoln Electric Company

D. B. Overvaag, 1st Vice Chair
Smith Equipment Company, Division of ITW, Incorporated

D. S. Werner, 2nd Vice Chair
Breakthrough Business Solutions

E. H. Abrams, Secretary
American Welding Society

J. F. Henderson
Victor Technologies, Incorporated.

L. L. Liston, Jr.
Consultant

C. R. McGowan
McGowan Technical Services

J. C. Papritan
The Ohio State University

A. T. Sheppard
The DuRoss Group

Advisors to the AWS C4 Committee on Oxyfuel Gas Welding and Cutting

J. D. Compton
JD & Associates

J. G. Dawson, Jr.
Consultant

D. G. Howden
Consultant

J. D. Karow
Messer Cutting Systems, (Ret.)
Personnel (Original)

AWS C4 Committee on Oxyfuel Gas Welding and Cutting

A. T. Sheppard, Chair
M. J. Hogan, 1st Vice Chair
D. B. Overvaag, 2nd Vice Chair
A. M. Alonso, Secretary
J. D. Compton
*J. G. Dawson, Jr.
M. D. English
*D. Hambleton
*C. M. Hightower
*R. E. Holt
J. D. Karow
L. L. Liston, Jr.
C. R. McGowan
D. Mirgliotta
D. A. Pryor
R. A. Smith

AWS C4 Task Group

M. J. Hogan, Chair
A. M. Alonso, Secretary
J. D. Karow
D. B. Overvaag
D. A. Pryor
A. T. Sheppard

Harris Calorific, Division of The Lincoln Electric Company
American Welding Society
College of the Canyons
Consultant
American Bridge Company
Smith Equipment Company, Division of ITW
BMS, Incorporated
Retired
American General Corporation
National Torch Tip
McGowan Technical Services, Incorporated
Forest City Erectors, Incorporated
Victor Equipment Company
Compressed Gas Association

*Advisor
Table of Contents

Personnel (Reaffirmation) .. v
Personnel (Original) .. vii
Foreword ... ix
List of Tables .. xii
List of Figures .. xii

1. **Scope** ... 1
2. **Normative references** .. 1
3. **Terms and definitions** .. 2
 3.1 General ... 2
 3.2 Terms and definitions explained by figures. 2

4. **Symbols** ... 7
5. **Form and location tolerances** ... 8
6. **Determination of the quality of cut surfaces** 8
 6.1 General ... 8
 6.2 Measuring .. 9

7. **Quality of the cut surface** ... 11
 7.1 Characteristic values ... 11
 7.2 Measuring ranges .. 12

8. **Dimensional tolerances** .. 15
 8.1 General ... 15
 8.2 Dimensional tolerances on parts without finishing 16
 8.3 Dimensional tolerances on parts with finishing 17

9. **Designation** .. 18
10. **Information in technical documentation** 18
 10.1 Indications of size .. 18
 10.2 Indication of quality of cut surface and of tolerance class 18

Annex A (informative) Achievable cutting qualities for different cutting processes ... 21
Annex B (informative) Principles of process 25
Bibliography .. 27

National Informative Annexes .. 29
Annex C (Informative)—Criteria for Describing Oxygen-Cut Surfaces ... 29
Annex D (Informative)—Bibliography 33
Annex E (Informative)—Guidelines for the Preparation of Technical Inquiries .. 35

List of AWS Documents on Oxyfuel Gas Welding and Cutting ... 37
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Precision measuring instruments</td>
</tr>
<tr>
<td>2</td>
<td>Coarse measuring instruments</td>
</tr>
<tr>
<td>3</td>
<td>Dimensions for Δa</td>
</tr>
<tr>
<td>4</td>
<td>Perpendicularity or angularity tolerance, u</td>
</tr>
<tr>
<td>5</td>
<td>Mean height of the profile, Rz5</td>
</tr>
<tr>
<td>6</td>
<td>Limit deviations for nominal dimensions tolerance class 1</td>
</tr>
<tr>
<td>7</td>
<td>Limit deviations for nominal dimensions tolerance class 2</td>
</tr>
<tr>
<td>8</td>
<td>Machining allowance, Bz</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terms related to the cutting process of the work piece</td>
</tr>
<tr>
<td>2</td>
<td>Terms on the finished work piece</td>
</tr>
<tr>
<td>3</td>
<td>Straight cut</td>
</tr>
<tr>
<td>4</td>
<td>Contour cut</td>
</tr>
<tr>
<td>5</td>
<td>Drag line</td>
</tr>
<tr>
<td>6</td>
<td>Perpendicularity and angularity tolerances</td>
</tr>
<tr>
<td>7</td>
<td>Mean height of the profile</td>
</tr>
<tr>
<td>8</td>
<td>Melting</td>
</tr>
<tr>
<td>9</td>
<td>Gouging</td>
</tr>
<tr>
<td>10</td>
<td>Form and location tolerances shown by the example of a sheet plate</td>
</tr>
<tr>
<td>11</td>
<td>Definition of the measuring range for perpendicularity and angularity tolerances</td>
</tr>
<tr>
<td>12</td>
<td>Perpendicularity or angularity tolerance, u</td>
</tr>
<tr>
<td>13</td>
<td>Mean height of the profile, Rz5</td>
</tr>
<tr>
<td>14</td>
<td>Dimensional tolerances on parts without finishing</td>
</tr>
<tr>
<td>15</td>
<td>Dimensional tolerances on parts with finishing</td>
</tr>
<tr>
<td>A.1</td>
<td>Typical cutting qualities achievable with perpendicularity or angularity tolerance, u — Work piece thickness up to 30 mm</td>
</tr>
<tr>
<td>A.2</td>
<td>Typical cutting qualities achievable with perpendicularity or angularity tolerance, u — Work piece thickness up to 150 mm</td>
</tr>
<tr>
<td>A.3</td>
<td>Typical cutting qualities achievable with mean height of the profile, r5 — Work piece thickness up to 30 mm</td>
</tr>
<tr>
<td>A.4</td>
<td>Typical cutting qualities achievable with mean height of the profile, r5 — Work piece thickness up to 150 mm</td>
</tr>
<tr>
<td>C.1</td>
<td>Flatness</td>
</tr>
<tr>
<td>C.2</td>
<td>Draglines</td>
</tr>
<tr>
<td>C.3</td>
<td>Roughness</td>
</tr>
<tr>
<td>C.4</td>
<td>Notch</td>
</tr>
<tr>
<td>C.5</td>
<td>Angularity</td>
</tr>
<tr>
<td>C.6</td>
<td>Top Edge Rounding</td>
</tr>
<tr>
<td>C.7</td>
<td>Slag</td>
</tr>
<tr>
<td>C.8</td>
<td>C4.1–77 Surface Roughness Guide for Oxygen Cutting</td>
</tr>
</tbody>
</table>
Thermal cutting — Classification of thermal cuts — Geometrical product specification and quality tolerances

1 Scope
This standard applies to materials suitable for oxyfuel flame cutting, plasma cutting and laser cutting. It is applicable to flame cuts from 3 mm to 300 mm, plasma cuts from 1 mm to 150 mm and to laser cuts from 0.5 mm to 40 mm. This standard includes geometrical product specifications and quality tolerances.

The geometrical product specifications are applicable if reference to this standard is made in drawings or pertinent documents, e.g. delivery conditions.

If this standard is also to apply, by way of exception, to parts which are produced by different cutting processes (e.g. high-pressure water jet cutting), this has to be agreed upon separately.

2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of this standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 1101:1983, Technical drawings — Geometrical tolerancing — Tolerancing of form, orientation, location and run-out — Generalities, definitions, symbols, indications on drawings

ISO 2553, Welded, brazed and soldered joints — Symbolic representation on drawings

ISO 3274, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Nominal characteristics of contact (stylus) instruments

ISO 8015, Technical drawings — Fundamental tolerancing principle