Structural Welding Code—
Aluminum

Sixth Edition

Supersedes AWS D1.2/D1.2M:2008

Prepared by the
American Welding Society (AWS) D1 Committee on Structural Welding

Under the Direction of the
AWS Technical Activities Committee

Approved by the
AWS Board of Directors

Abstract
This code covers the welding requirements for any type structure made from aluminum structural alloys, except for aluminum pressure vessels and pressure piping. Clauses 1 through 8 constitute a body of rules for the regulation of welding in aluminum construction. A commentary on the code is also included with the document.
Photocopy Rights. No portion of this standard may be reproduced, stored in a retrieval system, or transmitted in any form, including mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

Authorization to photocopy items for internal, personal, or educational classroom use only or the internal, personal, or educational classroom use only of specific clients is granted by the American Welding Society provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, tel: (978) 750-8400; Internet: <www.copyright.com>.

© 2014 by American Welding Society
All rights reserved
Printed in the United States of America
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex J). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D1 Committee on Structural Welding. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AW D1 Committee on Structural Welding and the author of the comments will be informed of the Committee's response to the comments. Guests are invited to attend all meetings of the AWS D1 Committee on Structural Welding to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Dedication

In Memoriam

Paul J. Sullivan
1926–2013

This issue of AWS D1.2, *Structural Welding Code—Aluminum*, is dedicated to the memory of Paul J. Sullivan. Among his many contributions to the American Welding Society, Paul was one of the charter members of the D1G Aluminum Subcommittee. He was a faithful member for many years and served as the Subcommittee Chairman for six years. Without Paul’s wisdom and guidance, the D1.2 Code would not be the document we have today. Paul’s intelligence, parliamentary knowledge, mentorship, and warm good humor will be missed by all of us.
Personnel

AWS D1 Committee on Structural Welding

D. K. Miller, Chair
The Lincoln Electric Company

A. W. Sindel, Vice Chair
Alstom Power Steam

T. L. Niemann, 2nd Vice Chair
Minnesota Department of Transportation

B. C. McGrath, Secretary
American Welding Society

F. Armao
The Lincoln Electric Company

E. L. Bickford
Acute Technological Services

T. W. Burns
AlcoTec Wire Corporation

H. H. Campbell, III
Pazuzu Engineering

R. D. Campbell
Bechtel

R. B. Corbit
CB&I

M. A. Grieco
Massachusetts Department of Transportation

C. W. Holmes
Modjeski & Masters, Incorporated

J. J. Kenney
Shell International E & P

J. H. Kiefer
ConocoPhillips Company

S. W. Kopp
High Steel Structures

V. Kuruvilla
Genesis Quality Systems

J. Lawmon
American Engineering and Manufacturing

N. S. Lindell
Oregon Iron Works, Incorporated/United Streetcar

D. R. Luciani
Canadian Welding Bureau

P. W. Marshall
MHP Systems Engineering

M. J. Mayes
Mayes Testing Engineers, Incorporated

D. L. McQuaid
D. L. McQuaid & Associates, Incorporated

R. D. Medlock
High Steel Structures

J. Merrill
AMEC E&I

J. B. Pearson
LTK Engineering Services

D. C. Phillips
Hobart Brothers Company

D. D. Rager
Rager Consulting, Incorporated

T. J. Schlafly
AISC

D. R. Scott
PSI

R. E. Shaw
Steel Structures Technology Center, Incorporated

R. W. Stieve
Greenman-Pedersen, Incorporated

M. M. Tayarani
Massachusetts Department of Transportation

K. K. Verma
Consultant

D. G. Yantz
Canadian Welding Bureau

Advisors to the AWS D1 Committee on Structural Welding

W. G. Alexander
WGAPE

N. J. Altrebrando
STV, Incorporated

E. M. Beck
AMEC

O. W. Blodgett
The Lincoln Electric Company

B. M. Butler
Walt Disney World Company

L. E. Collins
Team Industries, Incorporated

R. A. Dennis
Consultant

G. L. Fox
Consultant
Advisors to the AWS D1 Committee on Structural Welding (Continued)

- H. E. Gilmer
 Tampa Tank—Florida Structural Steel
- G. J. Hill
 G J Hill & Associates
- M. L. Hoitomt
 Consultant
- D. R. Lawrence, Jr
 Welding Engineer
- J. E. Meyers
 Consultant
- J. W. Post
 J W Post & Associates, Incorporated
- *P. J. Sullivan
 Massachusetts Highway Department (Retired)
- B. D. Wright
 Advantage Aviation Technologies

AWS D1G Subcommittee on Aluminum Structures

- T. W. Burns, Chair
 AlcoTec Wire Corporation
- J. R. Kissell, Vice Chair
 The TGB Partnership
- B. C. McGrath, Secretary
 American Welding Society
- F. G. Armao
 The Lincoln Electric Company
- M. W. Elsemore
 Boeing
- D. R. Haydock
 General Atomics
- C. W. Hayes
 The Lincoln Electric Company
- A. L. Johnson
 Johnson Inspection
- S. G. Kowats
 International Training Institute
- G. McCleary
 SAIC
- T. M. Nelson
 LTK Engineering Services
- D. D. Rager
 Rager Consulting, Incorporated
- M. A. Rosenbalm
 Hapco Pole Products
- D. Schaffer
 Airgas
- T. W. Studebaker
 Terracon Consultants
- J. L. Uebele
 Waukesha County Tech College
- G. J. White
 Hobart Filler Metals
- K. L. Williams
 Alcoa Technical Center
- D. G. Yantz
 Canadian Welding Bureau

Advisors to the AWS D1G Subcommittee on Aluminum Structure

- T. Anderson
 ITW Welding North America
- C. R. Briden
 Consultant
- J. P. Colgan
 Kinze Manufacturing, Incorporated
- D. R. Luciani
 Canadian Welding Bureau
- R. C. Minor
 Hapco Aluminum Poles
- C. K. Nicholson
 AMEC
- *P. J. Sullivan
 Massachusetts Highway Department (Retired)

*Deceased
Foreword

This foreword is not part of AWS D1.2/D1.2M:2014, *Structural Welding Code—Aluminum*, but is included for informational purposes only.

In the early 1970s, interest was expressed in developing a consolidated code for the structural welding of aluminum similar to the AWS D1.1, *Structural Welding Code—Steel*. Because of the interest of both the Aluminum Association and the American Welding Society, it was decided to begin in the mid-70s the task of developing a structural welding code for aluminum. Initially, the effort was undertaken by a task force of the Aluminum Association. In 1979, this task force became a subcommittee of the AWS Structural Welding Committee and the *Structural Welding Code—Aluminum* resulted from the continued activity of that subcommittee.

The first edition of the *Structural Welding Code—Aluminum* (hereafter referred to as the code) represented the continuing AWS policy to provide standards for structural welding. This code is provided for the fabrication, erection, and manufacturing industries as a set of rules and regulations for the welding of structural aluminum. Some of the more important aspects of this edition of the code are outlined in the following paragraphs.

Recommended joint details have been prepared for numerous complete joint penetration groove welded joints. Herein lies one of the major differences between the *Structural Welding Code—Steel* and this code. While the steel code allows for prequalified welding procedures, this code does not. This is mainly because of the many and varied possible welding conditions that can be obtained with semiautomatic welding variables most often used with aluminum and the wide range of both heat-treatable and nonheat-treatable alloys that may be welded under this code. Therefore, all of the joint details and the welding procedures used with this code shall be individually qualified and included in the Welding Procedure Specification (WPS).

Procedures and standards are outlined for several methods of nondestructive testing. Methods included are visual, radiographic, and dye-penetrant. Ultrasonic testing is permitted, but the procedure and acceptance criteria shall be specified in the contract documents.

This code does not concern itself with such design considerations as the arrangements of parts, loading, and the computation of stresses for proportioning the load-carrying members of a structure and their connection. Such considerations, it is assumed, are covered elsewhere in a general code or specification, such as the *Specification for Aluminum Structures* (the Aluminum Association).

Many of the users of this code will also be users of the *Structural Welding Code—Steel*. As a result, it was felt that as much similarity as possible between the codes for steel and aluminum should be achieved. Thus, the same general format was used in the development of the 1983 and 1990 editions of the aluminum code as in the steel code. The D1.2-97 code was reorganized so that the 1990 Clauses 4 and 5 (Technique and Qualification) were merged into one new Clause 4. Furthermore, Appendix H of D1.2-90 was moved to after the Preface. Clauses 1 through 7 constitute a body of rules for the regulation of welding on aluminum structures. The 2003 edition represented a major reorganization of the D1.2-97 format. For example, Clauses 7, 8, and 9 of D1.2-97 were eliminated, and their provisions distributed throughout the code. The 2008 edition added design criteria and new alloys, revised inspection criteria, and included recommended PJP groove-welded joint details.

In this 6th edition, the following major revisions were made:

1. Responsibilities of the Engineer, Contractor, and Inspector were added.
2. Class I and Class II structure types were eliminated.
3. 5652 was deleted from D1.2 because the Aluminum Association deactivated the alloy.
4. A change from conventional to pulsed power supply is no longer an essential variable for WPS qualification.
5. GTAW current type (AC or DC) is now an essential variable for performance qualification.
(6) A change in shielding gas is no longer an essential variable requiring welder requalification.
(7) Requirements for the preparation of base metal were revised.
(8) Base metal meeting ASTM B 928 in alloys 5083, 5086, and 5456 was added.
(9) A requirement to RT or UT the entire length of CJP groove welds welded from one side without backing and inaccessible for visual inspection of the back side was added.
(10) The torque test for qualifying stud weld WPSs was eliminated.
(11) Studs other than 5xxx series were deleted.
(12) Minimum tensile strengths for studs were revised.
(13) Friction stir welding was added.
(14) The minimum size of reinforcing fillet welds in corner and tee joints was revised.
(15) Deletion of Annex E — Effective Throat.
(16) Annex J — Safe Practices. Safety clauses were updated including references to additional material; the safety annex was deleted.

A vertical line in the margin or underlined text in clauses, tables, or figures indicates an editorial or technical change from the 2008 edition.

Commentary. The Commentary is nonmandatory and is intended only to provide insightful information into provision rationale.

Normative Annexes. These annexes address specific subjects in the code and their requirements are mandatory requirements that supplement the code provisions.

Informative Annexes. These annexes are not code requirements but are provided to clarify code provisions by showing examples, providing information, or suggesting alternative good practices.

Index. As in previous codes, the entries in the Index are referred to by subclause number rather than by page number. This should enable the user of the Index to locate a particular item of interest in minimum time.

Errata. It is the Structural Welding Committee's policy that all errata should be made available to users of the code. Therefore, any significant errata will be published in the Society News Section of the AWS Welding Journal and posted on the AWS web site at: http://www.aws.org/technical/d1/.

Suggestions. Your comments for improving AWS D1.2/D1.2M :2014, Structural Welding Code—Aluminum, are welcome. Submit comments to the Managing Director, Technical Services Division, American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166; telephone (305) 443-9353; fax (305) 443-5951; e-mail info@aws.org; or via the AWS web site <http://www.aws.org>.
Table of Contents

Dedication ... iv
Personnel .. v
Foreword ... vii
List of Tables ... xii
List of Figures .. xiii

1. General Requirements ... 1
 1.1 Scope .. 1
 1.2 Definitions ... 1
 1.3 Responsibilities ... 1
 1.4 Approval ... 2
 1.5 Welding Symbols .. 2
 1.6 Safety .. 2
 1.7 Units of Measurement .. 2
 1.8 Normative References ... 2

2. Design ... 5
 2.1 Scope .. 5
 2.2 Structural Design .. 5
 2.3 Drawings .. 5
 2.4 Groove Welds ... 5
 2.5 Fillet Welds .. 6
 2.6 Plug and Slot Welds .. 6
 2.7 Filler Plates .. 7

3. Qualification ... 11
 Part A—General Requirements .. 11
 3.1 General .. 11
 3.2 Qualification of WPSs .. 11
 3.3 Qualification of Welders, Welding Operators, and Tack Welders 12
 3.4 Position of Test Welds ... 12
 Part B—Types of Tests, Test Methods, and Acceptance Criteria ... 13
 3.5 Types and Purposes of Tests .. 13
 3.6 Visual Examination ... 13
 3.7 Tension Tests—Groove Welds .. 14
 3.8 Bend Tests—Groove Welds—Plate and Pipe .. 15
 3.9 Soundness Tests—Groove Welds in Castings .. 16
 3.10 Soundness Tests—Fillet Welds .. 16
 3.11 Radiographic Examination .. 17
 Part C—WPS Qualification ... 17
 3.12 General .. 17
 3.13 Limits of Qualified Positions for WPSs ... 17
 3.14 Limitation of Essential Variables—WPS Qualification .. 17
 3.15 Tests—WPS Qualification .. 17
 3.16 Retests ... 18
 Part D—Performance Qualification ... 19
 3.17 General .. 19
4. Fabrication

4.1 Scope

4.2 Processes

4.3 Base Metal

4.4 Filler Metal

4.5 Tungsten Electrodes

4.6 Shielding Gas

4.7 Welding and Cutting Equipment

4.8 Backing

4.9 Preheat and Interpass Temperatures

4.10 Welding Environment

4.11 Compliance with Design

4.12 Preparation of Base Metal

4.13 Re-entrant Corners

4.14 Weld Access Holes

4.15 Allowance for Camber

4.16 Assembly

4.17 Technique

4.18 Tack and Temporary Welds

4.19 Dimensional Tolerances for Welded Members

4.20 Arc Strikes

4.21 Weld Termination

4.22 Control of Distortion and Shrinkage

4.23 Weld Profiles

4.24 Repairs

4.25 Copper Inclusions

4.26 Cleaning of Completed Welds

4.27 Anti-Spatter Compound

4.28 Postweld Heat Treatment

5. Inspection

Part A—General Requirements

5.1 General

5.2 Inspection of Materials

5.3 Inspection of WPS Qualification and Equipment

5.4 Inspection of Welder, Welding Operator, and Tack Welder Qualifications

5.5 Inspection of Work and Records

5.6 Obligations of the Contractor

5.7 Nondestructive Testing

5.8 Extent of Testing

Part B—Radiographic Testing of Groove Welds in Butt Joints

5.9 General

5.10 RT Procedures

5.11 Acceptability of Welds

5.12 Examination, Report, and Disposition of Radiographs
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
</tr>
<tr>
<td>3.1</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>3.3</td>
</tr>
<tr>
<td>3.4</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>3.6</td>
</tr>
<tr>
<td>3.7</td>
</tr>
<tr>
<td>3.8</td>
</tr>
<tr>
<td>3.9</td>
</tr>
<tr>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
</tr>
<tr>
<td>4.3</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5.1</td>
</tr>
<tr>
<td>5.2</td>
</tr>
<tr>
<td>5.3</td>
</tr>
<tr>
<td>5.4</td>
</tr>
<tr>
<td>6.1</td>
</tr>
<tr>
<td>6.2</td>
</tr>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>7.2</td>
</tr>
<tr>
<td>7.3</td>
</tr>
<tr>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Details of Skewed T-Joints</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Filler Plates Less Than 1/4 in [6 mm] in Thickness</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Filler Plates 1/4 in [6 mm] or More in Thickness</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Positions of Groove Welds</td>
<td>38</td>
</tr>
<tr>
<td>3.2 Positions of Fillet Welds</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Positions of Test Plates for Groove Welds</td>
<td>40</td>
</tr>
<tr>
<td>3.4 Positions of Test Pipes for Groove Welds</td>
<td>41</td>
</tr>
<tr>
<td>3.5 Positions of Test Plates for Fillet Welds</td>
<td>42</td>
</tr>
<tr>
<td>3.6 Positions of Test Pipes for Fillet Welds</td>
<td>43</td>
</tr>
<tr>
<td>3.7 Reduced Section Tension Specimens—Plate and Pipe</td>
<td>44</td>
</tr>
<tr>
<td>3.8 Alternate Reduced Section Tension Specimen for Pipe (3 in [75 mm] Diameter or Less)</td>
<td>45</td>
</tr>
<tr>
<td>3.9 Full Section Tension Specimens—Small Diameter Pipe (3 in [75 mm] Diameter or Less)</td>
<td>45</td>
</tr>
<tr>
<td>3.10 Transverse Side Bend Specimens</td>
<td>46</td>
</tr>
<tr>
<td>3.11 Longitudinal Face and Root Bend Specimens</td>
<td>47</td>
</tr>
<tr>
<td>3.12 Transverse Face and Root Bend Specimens</td>
<td>48</td>
</tr>
<tr>
<td>3.13 Wraparound Guided Bend Jig</td>
<td>49</td>
</tr>
<tr>
<td>3.14 Plunger-Type Guided Bend Jig</td>
<td>50</td>
</tr>
<tr>
<td>3.15 Roller-Type Guided Bend Jig</td>
<td>52</td>
</tr>
<tr>
<td>3.16 Nick-Break Fracture Test Specimen for WPS Qualification of Cast to Cast or Cast to Wrought Alloys</td>
<td>54</td>
</tr>
<tr>
<td>3.17 Fillet Weld Soundness Test for WPS Qualification—Option 1—Plate</td>
<td>55</td>
</tr>
<tr>
<td>3.18 Fillet Weld Soundness Test for WPS Qualification—Pipe</td>
<td>56</td>
</tr>
<tr>
<td>3.19 Fillet Weld Soundness Test for WPS Qualification—Option 2—Root Bend Test—Plate</td>
<td>57</td>
</tr>
<tr>
<td>3.20 Location of Test Specimens for WPS Qualification—Plate</td>
<td>58</td>
</tr>
<tr>
<td>3.21 Location of Test Specimens for WPS Qualification—Pipe</td>
<td>59</td>
</tr>
<tr>
<td>3.22 Location of Test Specimens for WPS Qualification—Box Tubing</td>
<td>59</td>
</tr>
<tr>
<td>3.23 Location of Test Specimens for WPS Qualification—Job Size Pipe or Tubing 1/16 in through 3/8 in [2 mm through 10 mm] Wall Thickness</td>
<td>60</td>
</tr>
<tr>
<td>3.24 Location of Test Specimens for WPS Qualification—Job Size Pipe or Tubing over 3/8 in [10 mm] Wall Thickness</td>
<td>60</td>
</tr>
<tr>
<td>3.25 Performance Qualification in All Positions—Plate Thickness T ≤ 1/8 in [3 mm]</td>
<td>61</td>
</tr>
<tr>
<td>3.26 Performance Qualification in All Positions—Plate Thickness T > 1/8 in [3 mm]</td>
<td>61</td>
</tr>
<tr>
<td>3.27 Performance Qualification in the Horizontal Position—Plate Thickness T > 1/8 in [3 mm]</td>
<td>62</td>
</tr>
<tr>
<td>3.28 Alternative Groove Weld Qualification Test Plate—All Thicknesses</td>
<td>62</td>
</tr>
<tr>
<td>3.29 Tubular Groove Weld—Performance Qualification—Without Backing</td>
<td>63</td>
</tr>
<tr>
<td>3.30 Tubular Groove Weld—Performance Qualification—Without Backing (Alternative to Figure 3.29)</td>
<td>63</td>
</tr>
<tr>
<td>3.31 Tubular Groove Weld—Performance Qualification—With Backing</td>
<td>63</td>
</tr>
<tr>
<td>3.32 Fillet Weld or Tack Welder Performance Qualification—Plate</td>
<td>64</td>
</tr>
<tr>
<td>3.33 Fillet Weld or Tack Welder Performance Qualification—Pipe or Tubing</td>
<td>64</td>
</tr>
<tr>
<td>3.34 Location of Test Specimens on Welded Test Pipe and Box Tubing—Performance Qualification</td>
<td>65</td>
</tr>
<tr>
<td>4.1 Edge Discontinuities in Cut Plate</td>
<td>77</td>
</tr>
<tr>
<td>4.2 Acceptable and Unacceptable Weld Profiles</td>
<td>78</td>
</tr>
<tr>
<td>5.1 Radiographic Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints 10 in [250 mm] and Greater in Length</td>
<td>90</td>
</tr>
<tr>
<td>5.2 Radiographic Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints Less than 10 in [250 mm] in Length</td>
<td>91</td>
</tr>
</tbody>
</table>
Figure Page No.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Radiographic Identification and Hole-Type or Wire IQI Locations on Transition Joints 10 in [250 mm] and Greater in Length</td>
</tr>
<tr>
<td>5.4</td>
<td>Radiographic Identification and Hole-Type or Wire IQI Locations on Transition Joints Less Than 10 in [250 mm] in Length</td>
</tr>
<tr>
<td>5.5</td>
<td>Hole-Type IQI Design</td>
</tr>
<tr>
<td>5.6</td>
<td>Wire IQI Sizes</td>
</tr>
<tr>
<td>5.7</td>
<td>Radiographic Edge Blocks</td>
</tr>
<tr>
<td>5.8</td>
<td>Maximum Acceptable Discontinuity RT Images</td>
</tr>
<tr>
<td>6.1</td>
<td>Stud Weld Bend Jig</td>
</tr>
<tr>
<td>7.1</td>
<td>Friction Stir Welding Nomenclature</td>
</tr>
<tr>
<td>7.2</td>
<td>Heel and Plunge Depth</td>
</tr>
<tr>
<td>7.3</td>
<td>Friction Stir Tool Offset</td>
</tr>
</tbody>
</table>

Annexes

<table>
<thead>
<tr>
<th>Annex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Recommended CJP Groove Welded Joints</td>
</tr>
<tr>
<td>B.2</td>
<td>Recommended PJP Groove Welded Joints</td>
</tr>
<tr>
<td>B.3</td>
<td>PJP Box Connections</td>
</tr>
<tr>
<td>B.4</td>
<td>PJP—Circular—Tubular Joints for T-, Y-, and K-Connections Made by GTAW and GMAW</td>
</tr>
<tr>
<td>D.1</td>
<td>Examples of Tubular Connections</td>
</tr>
</tbody>
</table>

Commentary

<table>
<thead>
<tr>
<th>Commentary</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-2.1</td>
<td>Effective Throats of PJP Groove Welds Reinforced with Fillet Welds</td>
</tr>
<tr>
<td>C-4.1</td>
<td>Examples of Unacceptable Cutting Beyond the Point of Tangency</td>
</tr>
<tr>
<td>C-4.2</td>
<td>Permissible Offset in Abutting Members</td>
</tr>
<tr>
<td>C-4.3</td>
<td>Correction of Misaligned Members</td>
</tr>
<tr>
<td>C-4.4</td>
<td>Measurement of Flange Warpage and Tilt</td>
</tr>
</tbody>
</table>
Structural Welding Code—Aluminum

1. General Requirements

1.1 Scope

This code contains requirements for fabricating and erecting welded aluminum structures. When this code is stipulated in contract documents, conformance with all requirements of this code is required except those that the Engineer (see 1.2.1) or contract documents modifies or exempts.

1.2 Definitions

The welding terms used in this code shall be as defined in AWS A3.0, Standard Welding Terms and Definitions, Including Terms for Adhesive Bonding, Brazing, Soldering, Thermal Cutting, and Thermal Spraying, supplemented by the following:

1.2.1 Engineer. “Engineer” is the entity who acts in behalf of the Owner on matters within the scope of this code.

1.2.2 Contractor. “Contractor” is the entity responsible for fabrication in conformance with this code.

1.2.3 Inspectors

1.2.3.1 Contractor’s Inspector. “Contractor’s Inspector” is the entity who acts for, and in behalf of, the Contractor on all inspection within the scope of the code and the contract documents.

1.2.3.2 Verification Inspector. “Verification Inspector” is the entity who acts in behalf of the Owner or Engineer on inspection specified by the Engineer.

1.2.3.3 Inspector (unmodified). When the unmodified term “Inspector” is used, it applies equally to the Contractor’s Inspector and the Verification Inspector.

1.2.4 OEM (Original Equipment Manufacturer). “OEM” is the single Contractor that assumes some or all of the responsibilities assigned by this code to the Engineer.

1.2.5 Owner. “Owner” is the entity that exercises legal ownership of the structure produced under this code.

1.2.6 Code Terms “Shall,” “Should,” and “May.” “Shall,” “should,” and “may” have the following meanings:

1.2.6.1 Shall. Code provisions that use “shall” are mandatory.

1.2.6.2 Should. Code provisions that use “should” are recommended but not mandatory.

1.2.6.3 May. The word “may” allows the use of requirements that are alternates to this code’s requirements. The Contractor may use alternate requirements provided in this code when the code does not require the Engineer’s approval.

1.3 Responsibilities

1.3.1 Engineer’s Responsibilities. The Engineer is responsible for the contract documents that govern structures produced under this code. The Engineer may add to, delete from, or otherwise modify the requirements of this code to meet the requirements of a specific structure. Requirements that modify this code shall be incorporated into the contract documents.

The Engineer shall specify the following in contract documents:

(1) Code requirements that are applicable only when specified by the Engineer.

(2) Additional NDT that is not specifically addressed in this code.

(3) Verification inspection.

(4) Weld acceptance criteria other than that specified in Clause 5.

(5) Whether the structure is statically or cyclically loaded.