Structural Welding Code—
Stainless Steel

2nd Edition

Supersedes AWS D1.6:1999

Prepared by the
American Welding Society (AWS) D1 Committee on Structural Welding

Under the Direction of the
AWS Technical Activities Committee

Approved by the
AWS Board of Directors

Abstract
This code covers the requirements for welding stainless steel structural assemblies.
Table of Contents

1. **General Provisions**
 - 1.1 Scope ... 1
 - 1.2 Base Metals ... 1
 - 1.3 Terms and Definitions ... 2
 - 1.4 Responsibilities .. 2
 - 1.5 Approval .. 3
 - 1.6 Welding Symbols ... 3
 - 1.7 Safety Precautions ... 3
 - 1.8 Standard Units of Measurement 3
 - 1.9 Reference Documents ... 3

2. **Design of Welded Connections** .. 5
 - Part A—General Requirements 5
 - 2.0 General .. 5
 - 2.1 Contract Plans and Specifications 5
 - 2.2 Eccentricity of Connections 6
 - 2.3 Allowable Stresses ... 6
 - Part B—Weld Lengths and Areas 7
 - 2.4 Effective Areas .. 7
 - 2.5 Plug and Slots Welds .. 8
 - Part C—Miscellaneous Structural Details..................... 8
 - 2.6 General .. 8
 - 2.7 Filler Plates .. 8
 - 2.8 Lap Joints .. 9
 - 2.9 Transitions of Butt Joints in Nontubular Connections . 9
 - 2.10 Transitions in Tubular Connections 9
 - 2.11 Connections or Splices 9
 - 2.12 Built-Up Members in Statically Loaded Structures . 10
 - 2.13 Noncontinuous Beams 10
 - 2.14 Specific Requirements for Cyclically Loaded Structures . 10
 - 2.15 Combinations of Different Types of Welds 11
 - 2.16 Skewed T-Joints .. 11

3. **Prequalification** .. 17
 - 3.0 Scope ... 17
 - Part A—General Requirements 17
 - 3.1 Limitation of Variables for Prequalified WPSs 17
 - 3.2 Combination of WPSs ... 17
Part B—Prequalified Processes .. 17
 3.3 General .. 17
 3.4 Welding Processes .. 18
 3.5 Other Welding Processes ... 18

Part C—Base Metals .. 18
 3.6 Base Metals for Prequalified WPSs ... 18
 3.7 Auxiliary Component Base Metals ... 18
 3.8 Base Metal for Weld Tabs and Backing .. 18

Part D—Prequalified Filler Metals, Fluxes, and Gases ... 18
 3.9 Filler Metals .. 18
 3.10 Electrodes for SMAW .. 19
 3.11 Electrodes and Fluxes for SAW .. 19
 3.12 Consumables for GMAW, GTAW, and FCAW ... 19

Part E—Weld Sizes for Prequalified Joints ... 20
 3.13 General .. 20
 3.14 Prequalified Fillet Welds ... 20
 3.15 Prequalified Partial Joint Penetration (PJP) Groove Welds in Nontubular Connections 20
 3.16 Prequalified Partial Joint Penetration (PJP) Groove Welds in Tubular Connections 21
 3.17 Prequalified Flare-Bevel Groove Sizes .. 21
 3.18 Prequalified Skewed Joints .. 21
 3.19 Prequalified Plug and Slot Weld Sizes .. 21
 3.20 Prequalified Complete Joint Penetration (CJP) Groove Welds in Nontubular Connections 21
 3.21 Prequalified Complete Joint Penetration (CJP) Groove Welds in Tubular Connections 21

Part F—Prequalified Nontubular Joint Details .. 21
 3.22 General .. 21
 3.23 Partial Joint Penetration (PJP) Groove Welds ... 22
 3.24 Complete Joint Penetration (CJP) Groove Welds ... 22
 3.25 Plug and Slot Welds ... 22
 3.26 Flare-Bevel Groove Welds ... 22

Part G—Prequalified Tubular Joint Details .. 22
 3.27 General .. 22
 3.28 Prequalified Joints .. 23

Part H—Prequalified WPS Requirements ... 23
 3.29 General .. 23
 3.30 Plug and Slot Welds .. 24

4. Qualification .. 73

Part A—WPS Qualification Requirements .. 73
 4.1 General ... 73
 4.2 Essential Variables for WPS Qualification .. 74
 4.3 WPS Qualification Requirements .. 74
 4.4 Fillet Welds ... 74
 4.5 Tests Required for Groove and Fillet Welds .. 74
 4.6 Types, Purposes, and Acceptance Criteria of Tests for WPS Qualification ... 74

Part B—Performance Qualification Requirements for Welders and Welding Operators 76
 4.7 General ... 76
 4.8 Limitation of Variables for Welder Performance Qualification ... 77
 4.9 Limitation of Variables for Welding Operator Performance Qualification ... 77
 4.10 Types, Purposes, and Acceptance Criteria of Tests and Examinations for Welders and Welding Operators 78
5. Fabrication

5.0 General...115
5.1 Responsibilities..115
5.2 Preparation of Base Metal ..115
5.3 Assembly...116
5.4 Assembly Tolerances ..117
5.5 Distortion of Members ..117
5.6 Groove Weld Backing ..118
5.7 Tack Welds and Temporary Welds ...118
5.8 Peening ..118
5.9 Weld Termination ..118
5.10 Weld Cleaning ...118
5.11 Weld Profiles ...119
5.12 Weld Metal Removal and Repair ..119
5.13 Base Metal Repairs by Welding ...119
5.14 Mislocated Holes ...120
5.15 Inaccessibility of Unacceptable Welds ..120
5.16 Postweld Heat Treatment and Recommendations ..120

6. Inspection

Part A—General Requirements

6.1 General ...125
6.2 Inspection Personnel Qualification ..125
6.3 Inspection and Verification of Materials ...126
6.4 Verification of Procedure Qualification Record (PQR), Welding Procedure Specification (WPS), and Performance Qualification ...126
6.5 Inspection and Verification of Work and Records ...126
6.6 Obligations of the Contractor ...117
6.7 Nondestructive Testing ..117
6.8 Extent of Testing ..128

Part B—Radiographic Testing of Groove Welds in Butt Joints

6.9 General ...128
6.10 Radiographic Procedures ..128
6.11 Acceptability of Welds ...130
6.12 Examination, Report, and Disposition of Radiographs ...130

Part C—Ultrasonic Testing (UT) of Groove Welds

6.13 General ...130
6.14 UT Operator Requirements ...130
6.15 UT Equipment ..131
6.16 UT Procedure ...131
6.17 Reference Standard ..134
6.18 Calibration Methods ...134
6.19 Scanning Patterns and Methods ..135
6.20 Weld Discontinuity Characterization Methods ..135
6.21 Weld Discontinuity Sizing and Location Methods ..135
6.22 Interpretation Problems With Discontinuities ..136
6.23 Weld Classes and Amplitude Level ..137
6.24 Acceptance-Rejection Criteria ..137
6.25 Preparation and Disposition of Reports ..137
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Allowable Stresses ..</td>
</tr>
<tr>
<td>3.1</td>
<td>Prequalified Variables to be Specified in the WPS</td>
</tr>
<tr>
<td>3.2</td>
<td>Prequalified Austenitic Stainless Steels</td>
</tr>
<tr>
<td>3.3</td>
<td>Prequalified Filler Metal Classifications</td>
</tr>
<tr>
<td>3.4</td>
<td>Effective Weld Sizes of Flare-Groove Welds</td>
</tr>
<tr>
<td>3.5</td>
<td>Prequalified WPS Requirements ...</td>
</tr>
<tr>
<td>4.1</td>
<td>WPS Qualification Variables ..</td>
</tr>
<tr>
<td>4.1S</td>
<td>Overlay Essential Variables for all Processes</td>
</tr>
<tr>
<td>4.2</td>
<td>PQR—Type, Number of Test Specimens, and Range of Thickness Qualified</td>
</tr>
<tr>
<td>4.3</td>
<td>Performance Qualification—Thickness Limits and Test Specimens</td>
</tr>
<tr>
<td>4.4</td>
<td>Performance Qualification—Position and Diameter Limitations</td>
</tr>
<tr>
<td>4.5</td>
<td>F-Numbers—Grouping of Electrodes and Welding Rods for Qualification</td>
</tr>
<tr>
<td>4.6</td>
<td>A-Numbers—Classifications of Stainless Steel Weld Metal Analysis for WPS Qualification</td>
</tr>
<tr>
<td>4.7</td>
<td>Thickness Limitations for Overlay WPS and Welding Operator Performance Qualification</td>
</tr>
<tr>
<td>5.1</td>
<td>Recommended Backing Thicknesses ...</td>
</tr>
<tr>
<td>6.1</td>
<td>Hole-Type Image Quality Indicator (IQI) Requirements</td>
</tr>
<tr>
<td>6.2</td>
<td>Wire Image Quality Indicator (IQI) Requirements</td>
</tr>
<tr>
<td>6.3</td>
<td>IQI Selection and Placement ...</td>
</tr>
<tr>
<td>6.4</td>
<td>UT Acceptance-Rejection Criteria ...</td>
</tr>
<tr>
<td>7.1</td>
<td>Mechanical Property Requirements of Studs</td>
</tr>
<tr>
<td>7.2</td>
<td>Minimum Fillet Weld Size for Small Diameter Studs</td>
</tr>
<tr>
<td>7.3</td>
<td>Stud Torque Values (UNC)...</td>
</tr>
<tr>
<td>7.4</td>
<td>Stud Torque Values (Metric)..</td>
</tr>
<tr>
<td>B.1</td>
<td>Equivalent Fillet Weld Leg Size Factors for Skewed T-Joints</td>
</tr>
<tr>
<td>F.1</td>
<td>Suggested Filler Metals for Various Combinations of Stainless Steel and Other Ferrous Base Metals</td>
</tr>
<tr>
<td>F.2</td>
<td>Type and Chemical Composition of Stainless Steels and Other Ferrous Base Metals</td>
</tr>
<tr>
<td>H.1</td>
<td>Weld Classification ...</td>
</tr>
<tr>
<td>H.2</td>
<td>Nondestructive Testing/Examination Methods</td>
</tr>
<tr>
<td>H.3</td>
<td>Recommended Undercut Criteria ...</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Fillet Welds on Opposite Side of a Common Plane of Contact for Cyclically Loaded Structures</td>
</tr>
<tr>
<td>2.2</td>
<td>Fillet Welded Lap Joint in Tubular Connections</td>
</tr>
<tr>
<td>2.3</td>
<td>Double-Fillet Welded Lap Joint</td>
</tr>
<tr>
<td>2.4</td>
<td>Transition of Butt Joints in Nontubular Connections of Unequal Thickness</td>
</tr>
<tr>
<td>2.5</td>
<td>Transition of Butt Joints in Tubular Connections of Unequal Thickness</td>
</tr>
<tr>
<td>3.1</td>
<td>Weld Metal Delta Ferrite Content</td>
</tr>
<tr>
<td>3.2</td>
<td>Details for Prequalified Fillet Welds</td>
</tr>
<tr>
<td>3.3</td>
<td>Fillet Welded Prequalified Joints</td>
</tr>
<tr>
<td>3.4</td>
<td>Prequalified PJP Groove Welded Joints—Nontubular</td>
</tr>
<tr>
<td>3.5</td>
<td>Prequalified CJP Groove Welded Joints—Nontubular</td>
</tr>
<tr>
<td>3.6</td>
<td>Prequalified Joint Details for PJP Groove Welds—Tubular</td>
</tr>
<tr>
<td>3.7</td>
<td>Weld Bead Width/Depth Limitations</td>
</tr>
<tr>
<td>4.1</td>
<td>Positions of Groove Welds</td>
</tr>
<tr>
<td>4.2</td>
<td>Positions of Fillet Welds</td>
</tr>
<tr>
<td>4.3</td>
<td>Test Positions of Welds</td>
</tr>
<tr>
<td>4.4</td>
<td>Location of Test Specimens on PQR Plate or Pipe</td>
</tr>
<tr>
<td>4.5</td>
<td>PQR Fillet Weld Specimens</td>
</tr>
<tr>
<td>4.6</td>
<td>Bottom Ejecting Guided-Bend Test Jig</td>
</tr>
<tr>
<td>4.7</td>
<td>Bottom Guided-Bend Test Jig</td>
</tr>
<tr>
<td>4.8</td>
<td>Alternative Wrap-Around Guided-Bend Test Jig</td>
</tr>
<tr>
<td>4.9</td>
<td>Nomogram for Selecting Minimum Bend Radius</td>
</tr>
<tr>
<td>4.10</td>
<td>Transverse Rectangular Tension Test Specimen</td>
</tr>
<tr>
<td>4.11</td>
<td>Tension Specimens (Longitudinal)</td>
</tr>
<tr>
<td>4.12</td>
<td>Tension Specimen for Pipe Size Greater than 2 in. [50 mm] Nominal Diameter</td>
</tr>
<tr>
<td>4.13(A)</td>
<td>Tension Specimens—Reduced Section—Turned Specimens</td>
</tr>
<tr>
<td>4.13(B)</td>
<td>Tension Specimens—Full Section—Small Diameter Pipe</td>
</tr>
<tr>
<td>4.14</td>
<td>6 in. [150 mm] or 8 in. [200 mm] Pipe Assembly for Performance Qualification—2G and 5G Position</td>
</tr>
<tr>
<td>4.15</td>
<td>Plates—Longitudinal Performance Qualification</td>
</tr>
<tr>
<td>4.16</td>
<td>Transverse Side-Bend Specimens—Plate</td>
</tr>
<tr>
<td>4.17</td>
<td>Transverse Face-Bend and Root-Bend Specimens—Plate</td>
</tr>
<tr>
<td>4.18</td>
<td>Transverse Face-Bend and Root-Bend Specimens—Pipe</td>
</tr>
<tr>
<td>4.19</td>
<td>Longitudinal Face-Bend and Root-Bend Specimens—Plate</td>
</tr>
<tr>
<td>4.20</td>
<td>Fillet Weld Root-Bend Test Specimens</td>
</tr>
<tr>
<td>4.21</td>
<td>Overlay WPS and Performance Qualification</td>
</tr>
<tr>
<td>4.22</td>
<td>Chemical Analysis Test</td>
</tr>
<tr>
<td>4.23</td>
<td>Performance Qualification Specimen Locations</td>
</tr>
<tr>
<td>5.1</td>
<td>Typical Weld Access Hole Geometries</td>
</tr>
<tr>
<td>5.2</td>
<td>Typical Weld Profiles</td>
</tr>
<tr>
<td>6.1</td>
<td>Radiographic Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints 10 in. [250 mm] and Greater in Length</td>
</tr>
<tr>
<td>6.2</td>
<td>Radiographic Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints Less Than 10 in. [250 mm] in Length</td>
</tr>
<tr>
<td>6.3</td>
<td>Radiographic Identification and Hole-Type or Wire IQI Locations on Transition Joints 10 in. [250 mm] and Greater in Length</td>
</tr>
</tbody>
</table>
Figure Page No.
6.4 Radiographic Identification and Hole-Type or Wire IQI Locations on Transition Joints Less Than 10 in. [250 mm] in Length...145
6.5 Hole-Type Image Quality Indicator (IQI) Design..146
6.6 Wire Image Quality Indicator...147
6.7 Radiographic Edge Blocks...148
6.8 Transducer Crystal..148
6.9 Standard Reference Reflector...149
6.10 Recommended Calibration Block...149
6.11 Typical Alternate Reflectors (Located in Weld Mock-ups and Production Welds)........150
6.12 Transfer Correction..150
6.13 Compression Wave Depth (Horizontal Sweep Calibration)..151
6.14 Compression Wave Sensitivity Calibration..151
6.15 Shear Wave Distance and Sensitivity Calibration..152
6.16 Plan View of UT Scanning Patterns...153
6.17 Scanning Methods..154
6.18 Spherical Discontinuity Characteristics..155
6.19 Cylindrical Discontinuity Characteristics...155
6.20 Planar Discontinuity Characteristics...156
6.21 Discontinuity Height Dimension..156
6.22 Discontinuity Length Dimension..157
6.23 Screen Marking...157
6.24 Report of Ultrasonic Examination..158
7.1 Dimension and Tolerances of Standard-Type Shear Connectors................................165
7.2 Typical Tensile Test Fixture for Stud Welds ...165
7.3 Position of Test Stud Welds...166
7.4 Torque Testing Arrangement for Stud Welds...167
7.5 Stud Weld Bend Fixture...167
B.1 Details for Skewed T-Joints..172
D.1 Bend Testing Device...177
D.2 Suggested Type of Device for Qualification Testing of Small Studs.............................177
E.1 Weld Quality Requirements for Elongated Discontinuities as Determined by Radiography for Statically Loaded Structures..180
E.2 Maximum Acceptable Radiographic Images...185
E.3 For Radiography of Joints 1-1/8 in. [30 mm] and Greater, Typical Examples of Random Acceptable Discontinuities..186
E.4 Weld Quality Requirements for Discontinuities Occurring in Tension Welds (Limitations of Porosity and Fusion Characteristics)...187
E.5 Weld Quality Requirements for Discontinuities Occurring in Compression Welds (Limitations of Porosity or Fusion Type Discontinuities)..188
E.6 Class R Indications...189
E.7 Class X Indications..191
I.1 WRC-1992 Diagram Showing Root Pass Welding of 304 Stainless to a 36 Steel using ER309LSi Filler Metal..236
O.1 Transducer Positions (Typical)...260
O.2 Qualification Block..260
Structural Welding Code—Stainless Steel

1.1 Scope

This code covers welding requirements applicable to stainless steel structures and weldments subject to design stress. It shall be used in conjunction with any complementary code or specification for the design or construction of stainless steel structures and weldments. When this code is stipulated in contract documents, conformance with all provisions of the code shall be required, except for those provisions that the Engineer (see 1.4.1) or contract documents specifically modify or exempt. This code is not intended to be used for pressure vessels or pressure piping.

1.2 Base Metals

1.2.1 The base metals to be welded under this code shall be stainless steels with the following chemical composition limits:

(1) Carbon (C) content equal to or less than 0.5%

(2) Chromium (Cr) content equal to or greater than 10.5%

(3) Iron (Fe) content exceeding the content of any other single element

(4) Any combination of the types in 1.2.2 or with weldable carbon steels or low alloy steels. Free machining steels and steels with intentional additions of sulfur (S), selenium (Se), or lead (Pb) shall not be welded.

1.2.2 Stainless steel base metals may include any of the following types:

(1) Austenitic

(2) Ferritic

(3) Martensitic

(4) Precipitation Hardening (austenitic, semi-austenitic, and martensitic)

(5) Duplex

1.2.3 Base metals may be used in assemblies, the parts of which may be composed of:

(1) The same grade of stainless steel,

(2) Different grades of stainless steels belonging to the same type as listed above,

(3) Different types of stainless steels,

(4) Any combination of the types in 1.2.2 or with weldable carbon steels or low alloy steels. See Annex F for suggested filler metals for various combinations of stainless steels and other ferrous base metals.

1.2.4 The stainless steel base metals may be in any of the following forms:

(1) Sheet—cold rolled

(2) Sheet, plate—hot rolled

(3) Shapes

(4) Tubular products

(5) Clad materials

(6) Castings

(7) Forgings

1.2.5 Stainless steels are generally defined by American Iron and Steel Institute (AISI) Numbers, Unified Numbering System (UNS), and by American Society for Testing and Materials (ASTM) Specifications for product form, chemical composition, and mechanical properties. Newer proprietary steels may not be covered by standards and shall be identified by chemical composition or other suitable means which clearly define the steel.

1.2.6 Specified Base Metal. The contract documents shall designate the specifications and grades of base metal to be used. The provisions of this code are not intended to apply to welding base metals thinner than 1/16 in. [1.5 mm] or 16 gage.
1.2.7 Service Temperature Limits. The contract documents shall specify service temperature limits for the weldment.

1.2.8 Base Metal Prequalification. Austenitic stainless steels whose filler metals normally produce a small amount of ferrite (see Table 3.2 for prequalified limits) shall be considered prequalified, provided they are welded with filler metals in accordance with Table 3.3 and the WPSs used conform to all the applicable requirements of this code. All other stainless steels or combinations, and WPSs which are not prequalified, shall be qualified in conformance to this code. Suggested filler metals to weld a number of stainless steels are shown in Annex F.

1.2.9 Use of Unlisted Base Metals. When a stainless steel other than one of those listed in Table 3.2 is proposed for welded construction under this code, WPSs shall be established by qualification in accordance with the requirements of Clause 4, except as permitted in 1.2.9.1. The contractor shall have the responsibility for establishing the WPS by qualification.

1.2.9.1 An unlisted base metal which has the same chemical composition and strength as a listed steel may be welded with a prequalified or qualified WPS for the listed steel.

1.2.9.2 The Engineer may prescribe additional weldability testing of the unlisted steel. The responsibility for determining weldability is assigned to the party who either specifies a material not listed in Table 3.2, except as permitted by 1.2.9.1, or who proposes the use of a substitute material not listed in Table 3.2.

1.3 Terms and Definitions

The welding terms used in this code shall be interpreted in conformance with the definitions given in AWS A3.0:2001, Standard Welding Terms and Definitions, supplemented by Annex L of this code. Definitions, which follow, shall also apply:

1.3.1 Authority Having Jurisdiction. The organization, political subdivision, office or individual charged with the administration and enforcement of this standard.

1.3.2 Drawings. Plans, design and detail drawings, and erection plans.

1.3.3 Engineer. The duly designated individual who acts for, and in behalf of, the Owner on all matters within the scope of the code.

1.3.4 Contractor. Any company, or that individual representing a company, responsible for the fabrication, erection, manufacturing, or welding, in conformance with the provisions of this code.

1.3.5 Inspectors

1.3.5.1 Contractor’s Inspector. The duly designated person who acts for, and in behalf of, the Contractor on all inspection and quality matters within the scope of the code and of the contract documents.

1.3.5.2 Verification Inspector. The duly designated person who acts for, and in behalf of, the Owner or Engineer on all inspection and quality matters specified by the Engineer.

1.3.5.3 Inspector. When the term “Inspector” is used without further qualification as the specific Inspector category described above, it applies equally to the Contractor’s Inspector and the Verification Inspector within the limits of responsibility described in 6.1.2.

1.3.6 OEM (Original Equipment Manufacturer). That single Contractor that assumes some or all of the responsibilities assigned by this code to the Engineer.

1.3.7 Owner. The individual or company that exercises legal ownership of the product or structural assembly produced under this code.

1.3.8 Code Terms “Shall,” “Should,” and “May.” “Shall,” “should,” and “may” have the following significance:

1.3.8.1 Shall. Code provisions that use “shall” are mandatory unless specifically modified in contract documents by the Engineer.

1.3.8.2 Should. The word “should” is used to recommend practices that are considered beneficial, but are not requirements.

1.3.8.3 May. The word “may” in a provision allows the use of optional procedures or practices that can be used as an alternative or supplement to code requirements. Those optional procedures that require the Engineer’s approval shall either be specified in the contract documents, or require the Engineer’s approval. The Contractor may use any option without the Engineer’s approval when the code does not specify that the Engineer’s approval shall be required.

1.4 Responsibilities

1.4.1 Engineer’s Responsibilities. The Engineer shall be responsible for the development of the contract documents that govern products or structural assemblies produced under this code. The Engineer may add to, delete from, or otherwise modify, the requirements of this code to meet the particular requirements of a specific structure. If alternate requirements are proposed by other parties such as the Contractor, the Engineer may approve