Guide for Strengthening and Repairing Existing Structures
Guide for Strengthening and Repairing Existing Structures

1st Edition

Prepared by the American Welding Society (AWS) D1 Structural Welding Committee

Under the Direction of the AWS Technical Activities Committee

Approved by the AWS Board of Directors

Abstract

This guide provides information on strengthening and repairing existing structures. Included are sections on weldability, evaluation of existing welds, testing and sampling, heat straightening, and damage repair.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. Users should ensure that they have the latest edition.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

Finally, the AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex B).

With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D1 Committee on Structural Welding. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D1 Committee on Structural Welding and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D1 Committee on Structural Welding to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Personnel

AWS D1 Committee on Structural Welding

D. K. Miller, Chair
The Lincoln Electric Company
A. W. Sindel, 1st Vice Chair
Alstom Power, Incorporated
T. L. Niemann, 2nd Vice Chair
Minnesota Department of Transportation
S. Morales, Secretary
American Welding Society
 N. J. Altebrando
STV, Incorporated
 F. G. Armao
The Lincoln Electric Company
 E. L. Bickford
Acute Technological Services
*F. C. Breismeister
Strocal, Incorporated
B. M. Butler
Walt Disney World Company
H. H. Campbell III
Loadmaster Universal Rigs
 L. E. Collins
Team Industries, Incorporated
 R. B. Corbit
Exelon Nuclear Corporation
 R. A. Dennis
Consultant
 M. A. Grieço
Massachusetts Highway Department
 C. R. Hess
High Steel Structures, Incorporated (Retired)
 C. W. Holmes
Modjeski and Masters, Incorporated
 J. J. Kenney
Shell International E & P
 J. H. Kiefer
ConocoPhillips Company
 V. Kuruvilla
Genesis Quality Systems, Incorporated
 J. Lawmon
American Engineering & Manufacturing, Incorporated
 D. R. Lawrence II
Butler Manufacturing Company
 N. S. Lindell
Inspectech, Incorporated
 D. R. Luciani
Canadian Welding Bureau
 S. L. Luckowski
Department of the Army
 P. W. Marshall
MHP Systems Engineering
 M. J. Mayes
Mayes Testing Engineers, Incorporated
 D. L. McQuaid
D. L. McQuaid and Associates, Incorporated
 R. D. Medlock
High Steel Structures, Incorporated
 J. Merrill
MACTEC, Incorporated
 J. B. Pearson, Jr.
LTK Engineering Services
 D. C. Phillips
Hobart Brothers Company
 J. W. Post
J. W. Post and Associates, Incorporated
 D. D. Rager
Rager Consulting, Incorporated
 T. J. Schlafly
American Institute of Steel Construction
 D. R. Scott
PSI (Retired)
*D. A. Shapiro
URS—Washington Division
 R. E. Shaw, Jr.
Steel Structures Technology Center, Incorporated
 R. W. Stieve
Greenman-Pedersen, Incorporated
 P. J. Sullivan
Massachusetts Highway Department (Retired)
 M. M. Tayarani
Massachusetts Highway Department
 K. K. Verma
Federal Highway Administration
 B. D. Wright
Advantage Aviation Technologies

*Deceased
Advisors to the AWS D1 Committee on Structural Welding

W. G. Alexander WGAPE
E. M. Beck MACTEC, Incorporated
O. W. Blodgett The Lincoln Electric Company
M. V. Davis Consultant
G. L. Fox Consultant
G. J. Hill G. J. Hill and Associates, Incorporated
M. L. Hoitomt Hoitomt Consulting Services
W. A. Milek, Jr. Consultant
J. E. Myers Consultant

AWS D1F Subcommittee on Strengthening and Repair

N. J. Altebrando, Chair STV, Incorporated
S. W. Kopp, Vice Chair High Steel Structures, Incorporated
S. Morales, Secretary American Welding Society
C. W. Holmes Modjeski & Masters, Incorporated
P. Rimmer New York State Department of Transportation
J. D. Ross U.S. Army Corps of Engineers
R. W. Stieve Greenman-Pedersen, Incorporated
M. M. Tayarani Massachusetts Highway Department

Advisors to the AWS D1F Subcommittee on Strengthening and Repair

E. M. Beck MACTEC Engineering & Consulting
C. R. Hess High Steel Structures
G. J. Hill G. J. Hill & Associates
M. J. Mayes Mayes Testing Engineers, Incorporated
J. W. Post J. W. Post & Associates, Incorporated
R. E. Shaw, Jr. Steel Structures Technology Center, Incorporated
W. A. Thornton Cives Corporation
R. H. R. Tide Wiss, Janney, Elstner Associates
Foreword

This foreword is not part of AWS D1.7/D1.7M:2010, Guide for Strengthening and Repairing Existing Structures, but is included for informational purposes only.

This guide has been developed to assist in the task of strengthening and repairing existing structures. The guide includes information to assist both Engineers and Contractors in order to provide general direction and guidance on weld repairs, weld strengthening, and other procedures to correct challenging issues faced while dealing with existing structures.

Informative Annexes. These annexes are not part of this guide but are provided to clarify the guide’s recommendations by showing examples, providing information, or suggesting alternative good practices.

Errata. It is the Structural Welding Committee’s Policy that all errata should be made available to users of the code. Therefore, any significant errata will be published in the Society News Section of the Welding Journal and posted on the AWS web site at: http://www.aws.org/technical/d1/.

Suggestions. Your comments for improving AWS D1.7/D1.7M:2010, Guide for Strengthening and Repairing Existing Structures are welcome. Submit comments to the Managing Director, Technical Services Division, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126; telephone (305) 443-9353; fax (305) 443-5951; e-mail info@aws.org; or via the AWS web site <http://www.aws.org>.
Table of Contents

Personnel ...v
Foreword ...vi
List of Tables ..vii

1. General Provisions ...1
 1.1 Scope ..1
 1.2 Limitations ..1
 1.3 Approval ..2
 1.4 Safety Precautions ...2
 1.5 Standard Units of Measure ...2

2. Normative References ...2

3. Terms and Definitions ...2

4. Weldability ..3
 4.1 Scope ...3
 4.2 Introduction ...3
 4.3 Structural Metals ..4
 4.4 Weldability Based on Steel Composition ...6
 4.5 Welding Procedures and Techniques ..11
 4.6 Weldability Testing ...12

5. Evaluation of Existing Welds ..14
 5.1 Scope ...14
 5.2 Strength Evaluation ..15

6. Testing and Sampling ...24
 6.1 General Considerations ...24
 6.2 Sampling and Testing Plan ...24
 6.3 NDT Methods for Flaw Detection ...25
 6.4 NDT Methods for Material Identification ..27
 6.5 NDT Methods for Flaw Sizing and Characterization ...27
 6.6 NDT Methods to Determine Existing Stress Levels ...27
 6.7 NDT Methods to Determine Corrosion Effects ..27
 6.8 NDT Personnel Certification ..28

7. Heat Straightening ..29
 7.1 Evaluating Damaged Structural Steel ...29
 7.2 Restraining Forces ..29
 7.3 Heat Application ...29

8. Strengthening and Damage Repair ..31
 8.1 Scope ...31
 8.2 Possible Causes of Damage ...31
 8.3 Written Repair Procedures ...32
 8.4 Methods of Repair ..33
 8.5 General Repair Considerations ...33

Annex A (Informative)—Informative References ...35
Annex B (Informative)—Guidelines for the Preparation of Technical Inquiries for the Structural Welding Committee ..39
List of AWS Documents on Structural Welding ...41
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Fillet Weld Sizes ... 23</td>
</tr>
<tr>
<td>5.2</td>
<td>AWS D1.1, Figure 5.4 Convexity Limitations .. 23</td>
</tr>
<tr>
<td>7.1</td>
<td>Temperature Limits for Heat Application .. 30</td>
</tr>
<tr>
<td>7.2</td>
<td>Torch Tip Guide ... 30</td>
</tr>
</tbody>
</table>

1.1 Scope. This document contains basic information pertinent to the welded strengthening and repair of existing steel structures. The information contained in this guide is intended for both Engineers and Contractors with the purpose of providing direction and guidance to perform weld repairs, weld strengthening, and other weld procedures to correct problematic issues with existing structures. This guide contains background information that will be useful to the Engineer who is obligated under AWS D1.1/D1.1M:2008 Clause 8 to provide a comprehensive plan to address projects that involve strengthening and repairing of steel structures. The approach to the strengthening and repairing of these materials is to be developed using the information provided herein.

This guide is intended to apply to the strengthening and repair of existing structures made of the following materials:

1. Steel with a minimum specified yield strength of 100 ksi [690 MPa] or less
2. Cast iron
3. Wrought iron

Strengthening or repairing an existing structure includes modifications to meet new serviceability or load requirements as well as corrections made to repair conditions unsuitable for future use specified by the Engineer. The Engineer should prepare a contract for the work including, but not limited to, design, workmanship, inspection, acceptance criteria, and documentation. Except as modified in this clause, provisions of this guide should apply to the strengthening and repair of existing structures, including heat straightening of distorted members.

1.2 Limitations. This guide is intended to assist in the evaluation of existing structural elements and the development of appropriate procedures for repairing those elements. It does not provide exhaustive coverage of any specific topic.

This guide is intended to apply to the strengthening and repair of existing buildings and other structural systems. It is not intended to apply to:

1. Structures made of steels less than 1/8 in [3 mm] thick
2. Pressure vessels and pressure piping
3. Structures made of materials other than those listed under the scope
4. Seismic upgrades
5. New construction

Whereas this guide is not intended to apply the application outside the scope, the principles contained in this guide may be applied to other materials and applications. The Engineer is advised to use caution and engineering judgment for application outside the scope of this guide.

More importantly, it is critical to state here that this document does not provide detailed specific procedures and direction to correct any specific strengthening or repair operation regardless of how common or standard the procedure may be. Instead, information supplied herein as well as that material referenced in Annex A is intended to provide users with an overall approach to weld modifications as they pertain to: strengthening and repair; technical resources to develop...