Abstract
This code covers the requirements for design and welding of any type of titanium structure. Titanium pressure vessels and fluid-carrying pipe lines are specifically excluded. Clauses 1 through 5 and Annex A constitute a body of rules for the regulation of welding in titanium construction. A commentary on the code is also included with the document.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. This standard may also be corrected through publication of amendments or errata. It may also be supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda are posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

The AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so. On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex F). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D1 Committee on Structural Welding. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D1 Committee on Structural Welding and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D1 Committee on Structural Welding to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Personnel (Addenda)

AWS D1 Committee on Structural Welding

D. K. Miller, Chair The Lincoln Electric Company
A. W. Sindel, 1st Vice Chair Alston Power, Incorporated
T. L. Niemann, 2nd Vice Chair Minnesota Department of Transportation
M. Rubin, Secretary American Welding Society
N. J. Alterbrando STV, Incorporated
F. G. Armao The Lincoln Electric Company—China
E. L. Bickford Acute Technological Services
H. H. Campbell III Pazu Engineering
R. D. Campbell Bechtel National, Incorporated
R. B. Corbit Exelon Nuclear Corporation
M. A. Grieco Massachusetts Highway Department
C. W. Holmes Modjeski & Master, Incorporated
J. J. Kenney Shell International E & P
J. H. Kiefer Conoco Phillips Company
S. W. Kopp High Steel Structures
V. Kuruvilla Genesis Quality Systems
J. Lawmon American Engineering and Manufacturing
N. S. Lindell Inspectech, Incorporated
D. R. Luciani Canadian Welding Bureau
S. L. Luckowski Department of the Army
P. W. Marshall MHP System Engineering
M. J. Mayes Mayes Testing Engineers, Incorporated
D. L. McQuaid D. L. McQuaid & Associates, Incorporated
R. D. Medlock High Steel Structures, Incorporated
J. Merrill Mactec Engineering & Consulting
J. B. Pearson LTK Engineering Services
D. C. Phillips Hobart Brothers Company
D. D. Rager Rager Consulting, Incorporated
T. J. Schlafly AISC
D. R. Scott Consultant
R. E. Shaw Jr Consultant
R. W. Steive Greenman-Pedersen, Incorporated
M. M. Tayarani Massachusetts Department of Transportation
K. K. Verma Consultant
D. G. Yantz Canadian Welding Bureau

Advisors to the AWS D1 Committee on Structural Welding

W. G. Alexander WGAPE
E. M. Beck Mactec Engineering & Consulting
O. W. Blodgett The Lincoln Electric Company
B. M. Butler Walt Disney World Company
L. E. Collins Team Industries, Incorporated
R. A. Dennis Consultant
G. L. Fox Consultant
G. J. Hill G. J. Hill & Associates
Advisors to the AWS D1 Committee on Structural Welding (Continued)

M. L. Hoitmont Consultant
D. R. Lawrence II Consultant
J. E. Myers Consultant
J. W. Post J. W. Post & Associates, Incorporated
P. J. Sullivan Massachusetts Highway Department (Retired)
B. D. Wright Advantage Aviation Technologies

AWS D1N Subcommittee on Structural Welding Code Titanium

S. L. Luckowski, Chair Department of the Army
J. Lawmon, 1st Vice Chair American Engineering and Manufacturing
M. Rubin, Secretary American Welding Society
D. R. Bolser The Boeing Company
N. Cooper BAE Systems Submarines
M. Davis BAE Systems
J. Dorsch BAE Systems
B. Krueger Wah Chang
W. C. Mohr Edison Welding Institute
J. C. Monsees Hi-Tech Welding & Forming
R. Rush BAE Systems

Advisors to the AWS D1N Subcommittee on Structural Welding Code Titanium

B. L. Buchholz Department of the Army
D. W. Buchholz Rolls-Royce North America
D. Cottle D.C. Fabricators
M. Foos General Dynamics
T. A. Higgins TACOM
J. Horner BAE
Y. Komizo Joining & Welding Research Institute
D. D. Rager Rager Consulting, Incorporated
B. Roopohand ARDEC
A. W. Sindel Sindel & Associates
Personnel (Original)

AWS D1 Committee on Structural Welding

D. D. Rager, Chair Rager Consulting, Incorporated
D. K. Miller, 1st Vice Chair The Lincoln Electric Company
A. W. Sindel, 2nd Vice Chair Sindel and Associates
J. L. Gayler, Secretary American Welding Society
N. J. Altebrando STV, Incorporated
F. G. Armao The Lincoln Electric Company
E. L. Bickford Acute Technological Services
F. C. Breismeister Strocal, Incorporated
B. M. Butler Walt Disney World Company
H. H. Campbell, III Pazuçu Engineering
L. E. Collins Team Industries, Incorporated
R. B. Corbit Exelon Nuclear Corporation
M. V. Davis Consultant
R. A. Dennis Consultant
M. A. Grieco Massachusetts Highway Department
C. R. Hess High Steel Structures, Incorporated
C. W. Holmes Modjeski and Masters, Incorporated
J. H. Kiefer ConocoPhillips
V. Kuruvilla Genesis Quality Systems
J. Lawmon American Engineering & Manufacturing, Incorporated
D. R. Lawrence, II Butler Manufacturing Company
D. R. Luciani Canadian Welding Bureau
S. L. Luckowski Department of the Army
P. W. Marshall MHP Systems Engineering
M. J. Mayes Mayes Testing Engineers, Incorporated
D. L. McQuaid D L McQuaid and Associates, Incorporated
R. D. Medlock High Steel Structures, Incorporated
J. Merrill MACTEC, Incorporated
T. L. Niemann Minnesota Department of Transportation
D. C. Phillips Hobart Brothers Company
J. W. Post J. W. Post and Associates, Incorporated
T. Schlafly American Institute of Steel Construction
D. R. Scott PSI
D. A. Shapira Washington Group International
R. E. Shaw, Jr. Steel Structures Technology Center, Incorporated
R. W. Stieve Greenman-Pederson, Incorporated
P. J. Sullivan Massachusetts Highway Department (Retired)
M. M. Tayarani Massachusetts Turnpike Authority
K. K. Verma Federal Highway Administration
B. D. Wright Advantage Aviation Technologies

Advisors to the AWS D1 Committee on Structural Welding

W. G. Alexander WGAPÊ
E. M. Beck MACTEC, Incorporated
O. W. Blodgett The Lincoln Electric Company
Advisors to the AWS D1 Committee on Structural Welding (Continued)

G. L. Fox Consultant
A. R. Fronduti Rex Fronduti and Associates
G. J. Hill G. J. Hill and Associates, Incorporated
M. L. Hoitomt Hoitomt Consulting Services
W. A. Milek, Jr. Consultant
J. E. Myers Consultant
D. L. Sprow Consultant

AWS D1N Subcommittee on Titanium Structures

S. L. Luckowski, Chair Department of the Army
J. Lawmon, 1st Vice Chair American Engineering and Manufacturing
D. R. Bolser The Boeing Company
B. L. Buchholz Department of the Army
N. Cooper BAE Systems Submarines
D. Cottle DC Fabricators
M. Davis BAE Systems
J. Dorsch BAE Systems
M. Foos General Dynamics
P. Gonthier-Maurin CNIM
T. A. Higgins Department of the Army
B. Krueger Wah Chang
W. C. Mohr Edison Welding Institute
J. C. Monsees Hi-Tech Welding & Forming
B. Roopchand Department of the Army
R. Rush BAE Systems
G. Theodorski BAE Systems

Advisors to the AWS D1N Subcommittee on Titanium Welding

M. Beard RTI Energy Systems
G. Campbell General Dynamics Land Systems
T. W. Caouette BAE Systems
D. D. Harwig Thermadyne
J. Horner BAE—Land Systems
Y. Komizo Joining & Welding Research Institute
M. McCann TiMet
J. A. McMaster MC Consulting
A. W. Sindel Sindel & Associates
M. E. Wells Department of the Navy, Carderock Division Code 615
Foreword

This foreword is not part of AWS D1.9/D1.9M:2007-ADD1, Structural Welding Code—Titanium, but is included for informational purposes only.

This first edition of the AWS D1.9/D1.9M, Structural Welding Code—Titanium (hereafter referred to as the code), represents the continuing AWS policy to provide standards for structural welding. This code is provided for the fabrication, erection, and manufacturing industries as a set of rules and regulations for the welding of structural titanium. This code does not concern itself with such design considerations as the arrangements of parts and the computation of stresses for proportioning the load-carrying members of a structure and their connection. Such considerations, it is assumed, are covered elsewhere in a general specification.

Users of the AWS D1.1/D1.1M, Structural Welding Code—Steel, will note similarities in the general format of this code and D1.1. This was done in order to benefit from the long established history of D1.1, adjusted for the specific requirements for titanium. In the early 2000s, interest was expressed in developing a similar consolidated code for the structural welding of titanium. Because of the interest of both the U.S. Department of Defense and the American Welding Society, it was decided to commence the task of developing a structural welding code for titanium.

A major difference between the AWS D1.1 and this code is that the former allows for prequalified welding procedures, this code does not. This is mainly because of the need to have a method of demonstrating evidence of a fabricator’s competency to fabricate in one or more of the structural titanium alloys that may be welded under this code. Therefore, all the WPSs used for fabrication of work governed by this code are required to be qualified by test.

Clauses 1 through 5 constitute a body of rules for the regulation of welding on titanium structures. Procedures and standards are outlined for several methods of nondestructive testing. Methods included are visual, radiographic, ultrasonic, and dye penetrant.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS D1 Committee on Structural Welding, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.

Addenda

The following Addenda has been made and incorporated into the current edition of this document.

Page 81—Add a row above “Fine Scattered Porosity” to Table 5.2 for crack discontinuity types as follows:
Table 5.2
Radiographic Allowance for CJP and PJP Welds (see 3.8.2, 5.22, and A4.3.2)

<table>
<thead>
<tr>
<th>Discontinuity Types</th>
<th>Base Material Thickness Range, in [mm]</th>
<th>Radiograph Category, in [mm]</th>
<th>Acceptance Level (Reference ASTM E 390 Radiographs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracks</td>
<td>All</td>
<td>N/A</td>
<td>None allowed</td>
</tr>
<tr>
<td>Fine Scattered Porosity</td>
<td>≥1/8 [3] and ≤1/2 [12]</td>
<td>Up to 3/8 [10], incl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>1/2 [12] and ≤1-1/2 [38]</td>
<td>Up to 3/4 [19], incl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>1-1/2 [38] and ≤3 [76]</td>
<td>Up to 2 [50], incl.</td>
<td>2</td>
</tr>
<tr>
<td>Coarse Scattered Porosity</td>
<td>≥1/8 [3] and ≤1/2 [12]</td>
<td>Up to 3/8 [10], incl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>1/2 [12] and ≤1-1/2 [38]</td>
<td>Up to 3/4 [19], incl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>1-1/2 [38] and ≤3 [76]</td>
<td>Up to 2 [50], incl.</td>
<td>2</td>
</tr>
<tr>
<td>Linear Porosity or Rounded Indications</td>
<td>≥1/8 [3] and ≤1/2 [12]</td>
<td>Up to 3/8 [10], incl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>1/2 [12] and ≤1-1/2 [38]</td>
<td>Up to 3/4 [19], incl.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>1-1/2 [38] and ≤3 [76]</td>
<td>Up to 2 [50], incl.</td>
<td>2</td>
</tr>
<tr>
<td>Nonmetallic Inclusions</td>
<td>≥1/8 [3] and ≤1/2 [12]</td>
<td>Up to 3/8 [10], incl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>1/2 [12] and ≤1-1/2 [38]</td>
<td>Up to 3/4 [19], incl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>1-1/2 [38] and ≤3 [76]</td>
<td>Up to 2 [50], incl.</td>
<td>3</td>
</tr>
<tr>
<td>Tungsten Inclusions</td>
<td>≥1/8 [3] and ≤1/2 [12]</td>
<td>Up to 3/8 [10], incl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>1/2 [12] and ≤1-1/2 [38]</td>
<td>Up to 3/4 [19], incl.</td>
<td>2</td>
</tr>
<tr>
<td>Incomplete Joint Penetration CJP only</td>
<td>≥1/8 [3] and ≤1/2 [12]</td>
<td>Up to 3/8 [10], incl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>1/2 [12] and ≤1-1/2 [38]</td>
<td>Up to 3/4 [19], incl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>1-1/2 [38] and ≤3 [76]</td>
<td>Up to 2 [50], incl.</td>
<td>3</td>
</tr>
<tr>
<td>Incomplete Fusion CJP only</td>
<td>≥1/8 [3] and ≤1/2 [12]</td>
<td>Up to 3/8 [10], incl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>1/2 [12] and ≤1-1/2 [38]</td>
<td>Up to 3/4 [19], incl.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>>1-1/2 [38] and ≤3 [76]</td>
<td>Up to 2 [50], incl.</td>
<td>3</td>
</tr>
<tr>
<td>Incomplete Joint Penetration—Partial joint penetration welds only</td>
<td>All</td>
<td>N/A</td>
<td>1/32 [0.8] width full weld length 1/16 [1.5] width 4T in 8T weld length</td>
</tr>
<tr>
<td>Incomplete Fusion—Partial joint penetration welds only</td>
<td>All</td>
<td>N/A</td>
<td>1/32 [0.8] width full weld length 1/16 [1.5] width 4T in 8T weld length</td>
</tr>
</tbody>
</table>

Notes:
1. Porosity or inclusions allowed by this table shall be cause for rejection when closer than twice their maximum dimension to an edge or extremity of a weldment in a highly stressed or critical area, as determined by design engineering personnel.
2. Linear is described as having a length greater than three times the width. Rounded is defined by the converse.
Table of Contents

AWS D1.9/D1.9M:2007-ADD1

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel (Addenda)</td>
<td>v</td>
</tr>
<tr>
<td>Personnel (Original)</td>
<td>vii</td>
</tr>
<tr>
<td>Foreword</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
</tbody>
</table>

1. General Requirements

1.1 Scope ... 1
1.2 Limitations .. 1
1.3 Terms and Definitions .. 1
1.4 Responsibilities .. 2
1.5 Approval .. 2
1.6 Welding Symbols .. 2
1.7 Safety Precautions ... 2
1.8 Standard Units of Measurement 3
1.9 Reference Documents ... 3

2. Design of Welded Connections

Part A—General Requirements .. 5
2.1 General ... 5
2.2 Drawings and Design Data/Model 5
2.3 Allowable Stresses .. 5

Part B—Weld Lengths and Areas 5
2.4 Groove Welds ... 5
2.5 Fillet Welds .. 6
2.6 Plug and Slot Welds .. 6

Part C—Structural Details .. 7
2.7 Filler Plates .. 7
2.8 Backing Removal .. 7
2.9 Lap Joints ... 7
2.10 Transitions of Butt Joints .. 7
2.11 Connections or Splices ... 7
2.12 Combinations of General Types of Welds 8
2.13 Skewed T-Joints .. 8

Part D—Cyclically Loaded Structures 8
2.14 General ... 8
2.15 Region of Applicability ... 8
2.16 Allowable Stresses .. 8
2.17 Combined Stresses ... 8
2.18 Cyclic Load Stress Range 8

3. Qualification

3.1 Scope ... 17

xii
5. **Inspection** ..71

Part A—General Requirements ..71
5.1 General ..71
5.2 Inspection of Materials ..72
5.3 Inspection of Welding Procedure Specifications and Equipment ...72
5.4 Verification of Welder, Welding Operator, and Tack Welder Qualifications ..72
5.5 Inspection of Work and Records ..72
5.6 Obligations of the Contractor ..73
5.7 Nondestructive Testing ..73

Part B—Visual Inspection ...73
5.8 General ..73

Part C—Penetrant Testing ..74
5.9 General ..74

Part D—Radiographic Inspection ..74
5.10 General ..74
5.11 Radiographic Procedures ...74
5.12 Coverage and Acceptability of Welds ..76
5.13 Examination, Report, and Disposition of Radiographs ..76

Part E—Ultrasonic Testing of Groove Welds ..76
5.14 General ..76
5.15 Operator Requirements ...77
5.16 Procedure ..77

Part F—Other Examination Methods ...77
5.17 General ..77
5.18 Radiation Imaging Systems ..77

Part G—Acceptance Criteria ..77
5.19 General ..77
5.20 Visual Examination ..78
5.21 Penetrant Testing ..78
5.22 Radiographic Testing ..78
5.23 Ultrasonic Testing ..78

Annex A (Normative)—Welding of Titanium Armor Structures ..91
Annex B (Normative)—Reference Documents ..103
Annex D (Informative)—Safe Practices ...107
Annex E (Informative)—Sample Welding Forms ..111
Annex F (Informative)—Guidelines for the Preparation of Technical Inquiries ..121
Annex G (Informative)—Metallurgical Sample Preparation ...123
Commentary ..127

List of AWS Documents on Structural Welding ..145
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Allowable Stresses in Connections</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Minimum Diameter of Hole for Plug Welds or Width of Slot for Slot Welds</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Fatigue Stress Provisions</td>
<td>10</td>
</tr>
<tr>
<td>3.1 WPS Qualification—Type of Weld and Position Limitations</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Welder, Welding Operator, and Tack Welder Performance Limitations</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Limitations of Essential Variables: of a WPS</td>
<td>29</td>
</tr>
<tr>
<td>3.4 Limitations of Variables for Base Materials</td>
<td>33</td>
</tr>
<tr>
<td>3.5 Number and Type of Test Specimens and Range of Thickness Qualified—WPS Qualification</td>
<td>34</td>
</tr>
<tr>
<td>3.6 Number and Type of Test Specimens and Range of Thickness Qualified for Welder, Welding Operator, and Tack Welder Qualification</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Strengths of Welded Titanium Alloys and Products Available for Structure Applications</td>
<td>63</td>
</tr>
<tr>
<td>4.2 Recommended Titanium Alloy Filler Metals for Structural Welding of Various Base Titanium Alloys</td>
<td>66</td>
</tr>
<tr>
<td>5.1 Visual and Penetrant Acceptance Criteria</td>
<td>79</td>
</tr>
<tr>
<td>5.2 Radiographic Allowance for CJP and PJP Welds</td>
<td>81</td>
</tr>
<tr>
<td>5.3 Coloration Acceptance Criteria</td>
<td>82</td>
</tr>
<tr>
<td>5.4 Hole-Type IQI Requirements</td>
<td>82</td>
</tr>
<tr>
<td>5.5 Wire IQI Requirements</td>
<td>83</td>
</tr>
<tr>
<td>5.6 IQI Selection and Placement</td>
<td>83</td>
</tr>
<tr>
<td>A.1 Thickness of Test Plates and Requirements for Ballistic Tests</td>
<td>95</td>
</tr>
<tr>
<td>A.2 Radiographic Sampling Requirements</td>
<td>95</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Maximum Fillet Weld Size Along Edges in Lap Joints</td>
</tr>
<tr>
<td>2.2</td>
<td>Fillets in Skewed T-Joints</td>
</tr>
<tr>
<td>2.3</td>
<td>Thin Filler Plates</td>
</tr>
<tr>
<td>2.4</td>
<td>Thick Filler Plates</td>
</tr>
<tr>
<td>2.5</td>
<td>Minimum Amount of Lap and Double Fillet Weld</td>
</tr>
<tr>
<td>2.6</td>
<td>Thickness</td>
</tr>
<tr>
<td>2.7</td>
<td>Plan Views of Width Transitions</td>
</tr>
<tr>
<td>2.8</td>
<td>Effective Throat</td>
</tr>
<tr>
<td>2.9</td>
<td>Cyclic Load Stress Range</td>
</tr>
<tr>
<td>3.1</td>
<td>Positions of Groove Welds</td>
</tr>
<tr>
<td>3.2</td>
<td>Positions of Fillet Welds</td>
</tr>
<tr>
<td>3.3</td>
<td>Position of Test Plates for Groove Welds</td>
</tr>
<tr>
<td>3.4</td>
<td>Positions of Groove Welds in Pipe or Tubing</td>
</tr>
<tr>
<td>3.5</td>
<td>Positions of Test Plates for Fillet Welds</td>
</tr>
<tr>
<td>3.6</td>
<td>Positions of Test Pipes for Fillet Welds</td>
</tr>
<tr>
<td>3.7</td>
<td>Weld Contact Angle Definition</td>
</tr>
<tr>
<td>3.8</td>
<td>Root Fusion Requirements for Complete Penetration T-Joints in Material Numbers M51, M52, M53, and M54</td>
</tr>
<tr>
<td>3.9</td>
<td>Reduced Section Tension Specimens—Plate and Pipe</td>
</tr>
<tr>
<td>3.10</td>
<td>Alternate Reduced Section Tension Specimen for Pipe (3 in [76 mm] Diameter or Less) or Tubing</td>
</tr>
<tr>
<td>3.11</td>
<td>Full Section Tension Specimens—Small Diameter, 1 in [25 mm] Outside Diameter or Less, Pipe or Tubing</td>
</tr>
<tr>
<td>3.12</td>
<td>Reduced All-Weld Tensile Specimens</td>
</tr>
<tr>
<td>3.13</td>
<td>Transverse Side Bend Specimens</td>
</tr>
<tr>
<td>3.14</td>
<td>Transverse Face and Root Bend Specimens</td>
</tr>
<tr>
<td>3.15</td>
<td>Longitudinal Face and Root Bend Specimens</td>
</tr>
<tr>
<td>3.16</td>
<td>Wraparound Guided Bend Jig</td>
</tr>
<tr>
<td>3.17</td>
<td>Plate—Relative Location of Test Specimens</td>
</tr>
<tr>
<td>3.18</td>
<td>Box Tubing—Relative Location of Test Specimens for WPS and Performance Qualifications</td>
</tr>
<tr>
<td>3.19</td>
<td>Relative Location of Test Specimens</td>
</tr>
<tr>
<td>3.20</td>
<td>Fillet Weld—Relative Location of Test Specimens</td>
</tr>
<tr>
<td>3.21</td>
<td>Fillet Weld Pipe—Relative Location of Test Specimens</td>
</tr>
<tr>
<td>3.22</td>
<td>Fillet Weld Plate to Pipe—Relative Location of Test Specimens</td>
</tr>
<tr>
<td>3.23</td>
<td>Plug Weld Macroetch Test Plate—Welder, Welding Operator, and Tack Welder Qualification</td>
</tr>
<tr>
<td>3.24</td>
<td>Requirements for Requalification Based on the Replacement of Permanent Backing with an Inert Gas Backing and Vice Versa for CJP Welds</td>
</tr>
<tr>
<td>4.1</td>
<td>Acceptable and Unacceptable Weld Profiles</td>
</tr>
<tr>
<td>4.2</td>
<td>Warpage of Flanges: Measurement of the Flange Toe Offset for an “I” or “H” Configuration Section</td>
</tr>
<tr>
<td>4.3</td>
<td>Depth Variation: Relative Location at Which the Beam Depth A-B is Measured for an “I” or “H” Configuration Section</td>
</tr>
<tr>
<td>4.4</td>
<td>Least Panel Dimension “d”</td>
</tr>
<tr>
<td>5.1</td>
<td>Hole Type IQI Design</td>
</tr>
<tr>
<td>5.2</td>
<td>Wire IQI Design</td>
</tr>
<tr>
<td>5.3</td>
<td>RT Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints 10 in [250 mm] and Greater in Length</td>
</tr>
<tr>
<td>Figure</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>5.4</td>
<td>RT Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints Less than 10 in [250 mm] in Length</td>
</tr>
<tr>
<td>5.5</td>
<td>RT Identification and Hole-Type or Wire IQI Locations on Transitions Joints 10 in [250 mm] and Greater in Length</td>
</tr>
<tr>
<td>5.6</td>
<td>RT Identification and Hole-Type or Wire IQI Locations on Transition Joints Less than 10 in [250 mm] in Length</td>
</tr>
<tr>
<td>A.1</td>
<td>Specimen for Armor Welder Qualification</td>
</tr>
<tr>
<td>A.2</td>
<td>Ballistic Test Plate</td>
</tr>
<tr>
<td>A.3</td>
<td>Single Groove Welds</td>
</tr>
<tr>
<td>A.4</td>
<td>Double Groove Weld</td>
</tr>
<tr>
<td>A.5</td>
<td>Examples of Weld Cracks That Can Occur from Projectile Impact and Indication of Measurement of Total Weld Crack for Acceptance Purposes</td>
</tr>
<tr>
<td>A.6</td>
<td>Welded Armor Data</td>
</tr>
<tr>
<td>A.7</td>
<td>Armor Plate Data</td>
</tr>
<tr>
<td>A.8</td>
<td>Weld Radiographic Report</td>
</tr>
<tr>
<td>G.1</td>
<td>Well Prepared Grade 2 Titanium Metallographic Specimen</td>
</tr>
<tr>
<td>G.2</td>
<td>Poorly Prepared Grade 2 Titanium Metallographic Specimen</td>
</tr>
</tbody>
</table>
1. General Requirements

1.1 Scope

The code contains the requirements for fabricating titanium structures. When the code is stipulated in contract documents, conformance with all provisions of the code shall be required, except for those provisions that the Engineer (see 1.4.1) or contract documents specifically modify or exempt.

Annex A of the code contains requirements for the ballistic testing of structural titanium welds.

The following is a summary of the code clauses:

1. General Requirements. This clause contains basic information on the scope and limitations of the code.

2. Design of Welded Connections. This clause contains requirements for the design of welded connections.

3. Qualification. This clause contains the qualification requirements for WPSs and welding personnel (welders, welding operators, and tack welders) necessary to perform code work.

4. Fabrication. This clause contains the requirements for the preparation, assembly, and workmanship of welded titanium structures.

5. Inspection. This clause contains criteria for the qualifications and responsibilities of inspectors, acceptance criteria for production welds, and procedures for performing visual inspection and NDE (nondestructive testing).

1.2 Limitations

The code is not intended to be used for the following:

1. Pressure vessels or pressure piping.

2. Base metals other than titanium.

3. Aerospace structures.

4. Titanium material less than 1/8 in [3 mm]. When base materials thinner than 1/8 in [3 mm] are to be welded the requirements of AWS B2.1, Specification for Welding Procedure and Performance Qualification, apply for qualification in conjunction with applicable provisions of this code.

1.3 Terms and Definitions

The welding terms used in the code shall be interpreted in conformance with the definitions given in AWS A3.0, Standard Welding Terms and Definitions, and the following definitions:

1.3.1 Owner. The “Owner” is the individual, company, or government agency that has legal title or right to the product produced under the code.

1.3.2 Engineer. “Engineer” shall be defined as a duly designated individual who acts for, and in behalf of, the Owner on all matters within the scope of the code.

1.3.3 Contractor. “Contractor” shall be defined as any company, or that individual representing a company, responsible for the fabrication, erection, manufacturing, or welding, in conformance with the provisions of the code.

1.3.4 Subcontractor. A person or business, which has a contract (as an “independent contractor” and not an employee) with a Contractor to provide some portion of the work or services on a project, which the Contractor has agreed to perform.

1.3.5 OEM (Original Equipment Manufacturer). “OEM” shall be defined as that single Contractor that assumes some or all of the responsibilities assigned by the code to the Engineer.