Recommended Practices for Local Heating of Welds in Piping and Tubing
Abstract

This standard provides information on recommended practices, equipment, temperature control, insulation, and advantages and disadvantages for the methods presently available for local heating of welded joints in pipe and tubing.
AWS D10 Subcommittee on Local Heat Treating of Pipework

J. W. McEnerney, Chair
T. Potter, Secretary
C. J. Bloch
H. W. Ebert
G. K. Hickox
J. Hill
L. A. Maier, Jr.
W.F. Newell, Jr.
L. Seum
M. C. Shepard
W. J. Sperko
D. F. Weaver

Gibson Tube, Incorporated
American Welding Society
Philip Technical Services
Exxon Research and Engineering Company
Consultant
Philip Technical Services (formerly Hill Technical Services)
Consultant
Newell and Associates, Incorporated
Bragg Crane and Rigging Company
Jacobs Engineering Group, Incorporated
Sperko Engineering Services
Fluor Daniel
Foreword

This foreword is not part of AWS D10.10/D1010M:1999 (R2009), Recommended Practices for Local Heating of Welds in Piping and Tubing, but is included for informational purposes only.

This recommended practice is intended to supply useful information to those with a need to apply heat to welds in piping and tubing under circumstances that do not permit placing the entire component in a furnace or oven.

The first edition of the recommended practice prepared by the AWS Committee on Piping and Tubing was approved and published as AWS D10.10-75, Local Heat Treatment of Welds in Piping and Tubing.

The second edition, ANSI/AWS D10.10-90, was revised to bring the document abreast of the present “state-of-the-art,” and to reemphasize certain important topics; particularly, thermocouple selection and placement, proper provision for insulation, and use of the radiant heating methods.

The present edition of D10.10 has been extensively revised to: identify/consider related domestic and international codes, standards and practices; more fully recognize the range of purposes for local heating; introduce terminology for local heating; consider the issues affecting important parameters and provide recommendations for specifying these parameters; consider both local 360-degree band and spot heating; expand the information regarding thermocouple location, attachment and accuracy; expand/update the information relating to insulation; expand the information regarding the thermal cycle; identify common process deviations and responses; introduce considerations regarding service environment; introduce quality assurance system considerations; and update and emphasize the heating methods most commonly used.

During preparation of the present edition, it was attempted to include recommendations based upon the best available, most current data regarding local heating. In most cases, the recommendations given are based upon published research, with extensive references provided. It is acknowledged that in some cases, the resulting recommendations may exceed the prevailing practice within industry, especially domestically. However, it is felt that the objective of this document is to present recommended practices based on an ordered assessment of available research and information, rather than a summary of current practice.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS D10 Committee on Piping and Tubing, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.

A formal reply will be issued after it has been reviewed by the appropriate personnel following established procedures.
Table of Contents

AWS D10.10/D10.10M:1999 (R2009)

Personnel (Reaffirmation) ... v
Personnel (Original) ... vii
Foreword ... ix
List of Tables .. xiv
List of Figures .. xiv

1. Scope .. 1

2. Reference Documents ... 1
 2.1 Piping Fabrication Codes .. 1
 2.2 Repair Codes ... 1
 2.3 Recommended Practices Regarding Service Environment 1

3. Introduction .. 1

4. Purposes for Local Heating .. 2
 4.1 Bake-Out ... 2
 4.2 Preheating and Interpass Heating .. 3
 4.3 Postheating ... 3
 4.4 Postweld Heat Treatment (PWHT) .. 4

5. Terminology for Local Heating ... 4
 5.1 Soak Band (SB) .. 5
 5.2 Heated Band (HB) ... 5
 5.3 Gradient Control Band (GCB) ... 5
 5.4 Control Zone ... 6

6. Local 360-Degree Band Heating ... 6
 6.1 Soak Band .. 6
 6.2 Heated Band ... 7
 6.3 Gradient Control Band ... 15
 6.4 Axial Temperature Gradient .. 16
 6.5 Summary of Recommendations for SB, HB, GCB, and Axial Temperature Gradient 17
 6.6 Recommended PWHT Practices .. 18

7. Local Spot PWHT ... 26
 7.1 Requirements in Fabrication and Repair Codes 26
 7.2 Basis for Current Practices .. 26
 7.3 Experience or Analysis to Justify Use 28

8. Measurement of Temperature ... 28
 8.1 Temperature-Indicating Crayons and Paints 28
 8.2 Selection of Thermocouples .. 28
 8.3 Installation of Thermocouples .. 29
 8.4 Location of Thermocouples ... 31
 8.5 Thermocouple Extension Wires ... 32
 8.6 Temperature Control and Recording Instruments 37
 8.7 Accuracy of Thermocouple Temperature Measurements 37

9. Insulation ... 38
 9.1 Classification of Insulation .. 38
 9.2 Health and Safety Issues Regarding Fiber Respirability 38
 9.3 Types of Insulation ... 39
9.4 Attachment of Insulation..39

10. Other Considerations..39
 10.1 Structural Integrity ...40
 10.2 Internal Liquids ...40
 10.3 Internal Convection ...41
 10.4 Thermal Expansion ...41

11. Thermal Cycle ...41
 11.1 Temperature Uniformity ..41
 11.2 Heating Rate ..42
 11.3 Hold Temperature and Time ...43
 11.4 Cooling Rate ..43

12. Response to Deviations ...44
 12.1 Thermocouple Failure ...44
 12.2 Heat Source Failure ...44
 12.3 Interruption During Heating ...44
 12.4 Interruption During Hold Period ..45
 12.5 Interruption During Cooling ...45
 12.6 Excessive Heating or Hold Times During PWHT ..46

13. Considerations Related to Service Environment ..46
 13.1 Appropriateness of Furnace and Local PWHT ..46
 13.2 Exemption from PWHT ...47
 13.3 Tempering and Stress Relaxation Objectives ...48
 13.4 Hardness Testing ..48
 13.5 Induction Heating Stress Improvement (IHSI) ..49

14. Quality Assurance System ...49
 14.1 Quality System ...49
 14.2 Process Control ...49
 14.3 Response to In-Process Deviations ...50
 14.4 Testing ...50
 14.5 Documentation ...50
 14.6 Control of Inspection, Measuring, and Test Equipment ...51
 14.7 Training ..51
 14.8 Servicing ..51

15. Induction Heating ..51
 15.1 General ..51
 15.2 Effect of Composition and Temperature ..51
 15.3 Coil ..52
 15.4 Ampere Turns ..52
 15.5 Location of Turns of the Coil ...52
 15.6 Suggestions for Setup ...53
 15.7 Relative Advantages and Disadvantages of Induction Heating ...53

16. Electric Resistance Heating ..54
 16.1 General ..54
 16.2 Heaters ..54
 16.3 Power Sources ...55
 16.4 Suggestions for Setup ...56
 16.5 Relative Advantages and Disadvantages of Resistance Heating ..56

17. Flame Heating ...57
 17.1 General ..57
 17.2 Heat Sources ..57
Exothermic Heating

18. General ... 58
18. Nature of the Process ... 58
18. Determination of Process Suitability ... 58
18. Suggestions for Setup ... 59
18. Relative Advantages and Disadvantages of Exothermic Heating ... 59

Gas-Flame Generated Infrared Heating

19. General ... 60
19. Fundamentals .. 60
19. Burner Arrangement .. 60
19. Process Control .. 60
19. Sheltering of Thermocouples ... 60
19. Suggestions for Setup ... 60
19. Relative Advantages and Disadvantages of Gas-Flame Generated Infrared Heating 60

Radiant Heating by Quartz Lamps

20. General ... 60
20. Description of the Heating Method ... 61
20. Heater .. 61
20. Thermal Cycle Control ... 63
20. Effect of Work Surface Condition ... 63
20. Suggestions for Setup ... 63
20. Relative Advantages and Disadvantages of Quartz Lamp Radiant Heating ... 63

Comparison of Heating Processes

21. ... 64

Safety and Health

22. Noise .. 65
22. Electrical Hazards ... 65
22. Fire and Explosion Protection ... 65
22. Burn Protection .. 66
22. Tripping and Falling ... 66
22. Falling Objects ... 67
22. Confined Spaces .. 67
22. Electric and Magnetic Fields (EMF) ... 68
22. Lockout/Tagout ... 68

Annex A (Informative)—Discussion of Issues and Recommendations Regarding the Heated Band 71
Annex B (Informative)—Discussion of Stresses Induced During Local 360-Degree Band PWHT 75
Annex C (Informative)—Procedure for Thermocouple Attachment by Capacitor Discharge Welding 87
Annex D (Informative)—Accuracy of Thermocouple Temperature Measurements 89
Annex E (Informative)—Information on Types of Insulation ... 91
Annex F (Informative)—Standard Procedure for Local Heating .. 93
Annex G (Informative)—Standard Documentation Checklist for Local Heating 97
Annex H (Informative)—Guidelines for the Preparation of Technical Inquiries 99
List of AWS Documents on Piping and Tubing .. 101
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comparison of Minimum Preheat/Interpass Heating Soak Band Widths</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of Minimum PWHT Soak Band Widths</td>
</tr>
<tr>
<td>3</td>
<td>Minimum Recommendations for Local 360-Degree Band PWHT of Girth Welds on Piping in the Horizontal Position Based upon B31.1 Minimum PWHT Soak Band Requirements</td>
</tr>
<tr>
<td>4</td>
<td>Minimum Recommendations for Local 360-Degree Band PWHT of Girth Welds on Piping in the Horizontal Position Based upon B31.3 Minimum PWHT Soak Band Requirements</td>
</tr>
<tr>
<td>5</td>
<td>Minimum Recommendations for Local 360-Degree Band PWHT of Girth Welds on Piping in the Horizontal Position Based upon ASME Section III Minimum PWHT Soak Band Requirements</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of PWHT Axial Temperature Gradient Control Requirements</td>
</tr>
<tr>
<td>7</td>
<td>Summary of Recommendations for the Soak Band</td>
</tr>
<tr>
<td>8</td>
<td>Summary of Recommendations for HB, GCB, and Axial Temperature Gradient</td>
</tr>
<tr>
<td>9</td>
<td>Recommended Number of Control Zones and Thermocouple Locations for PWHT of Piping in the Horizontal Position</td>
</tr>
<tr>
<td>10</td>
<td>Thermocouple Data</td>
</tr>
<tr>
<td>11</td>
<td>Recommended Locations of Monitoring Thermocouples for Local 360-Degree Band PWHT</td>
</tr>
<tr>
<td>12</td>
<td>Comparison of the Characteristics of Commonly Used Insulation Materials</td>
</tr>
<tr>
<td>13</td>
<td>Comparison of Maximum Rates of Heating and Cooling During PWHT</td>
</tr>
<tr>
<td>14</td>
<td>Summary of Key Parameters for Induction Heating Stress Improvement (IHSI)</td>
</tr>
<tr>
<td>15</td>
<td>Typical Quartz Lamps</td>
</tr>
<tr>
<td>16</td>
<td>Comparison of Heating Processes</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic Diagram for Description of Local 360-Degree Band Heating</td>
</tr>
<tr>
<td>2</td>
<td>Example of Parameters for Local 360-Degree Band Bake-Out of a Butt Weld in a 12 NPS (300 DN), 1 in. (25 mm) Wall Thickness Pipe</td>
</tr>
<tr>
<td>3</td>
<td>Example of Parameters for Local 360-Degree Band Preheat/Interpass Heating of a Butt Weld in a 12 NPS (300 DN), 1 in. (25 mm) Wall Thickness Pipe</td>
</tr>
<tr>
<td>4</td>
<td>Example of Parameters for Local 360-Degree Band Postheating of a Butt Weld in a 12 NPS (300 DN), 1 in. (25 mm) Wall Thickness Pipe</td>
</tr>
<tr>
<td>5</td>
<td>Example of Parameters for Local 360-Degree Band PWHT of a Butt Weld in a 12 NPS (300 DN), 1 in. (25 mm) Wall Thickness Pipe</td>
</tr>
<tr>
<td>6</td>
<td>Local 360-Degree Band PWHT Practice for Branch Connection to Pipe Attachment Weld</td>
</tr>
<tr>
<td>7</td>
<td>Local 360-Degree Band PWHT Practice for Nozzle to Pipe Attachment Weld</td>
</tr>
<tr>
<td>8</td>
<td>Local 360-Degree Band PWHT Practice for Structural Pad/Clip Attachment Weld</td>
</tr>
<tr>
<td>9</td>
<td>Example of One Approach When the Heated Band From a Weld Requiring PWHT Intersects a Weld Not Requiring PWHT</td>
</tr>
<tr>
<td>10</td>
<td>Schematic Representation of Equipment Used to Directly Attach Thermocouples by Capacitor Discharge Welding</td>
</tr>
<tr>
<td>Figure</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>11</td>
<td>Schematic Representation of the Direct Attachment, Separated Junction Method for Thermocouple Attachment</td>
</tr>
<tr>
<td>12</td>
<td>Minimum Number of Thermocouples (Monitoring and Control) Recommended for Local 360-Degree Band PWHT of a Butt Weld for Piping in the Horizontal Position with Pipe Size up to 6 NPS (150 DN) and One Control Zone</td>
</tr>
<tr>
<td>13</td>
<td>Minimum Number of Thermocouples (Monitoring and Control) Recommended for Local 360-Degree Band PWHT of a Butt Weld for Piping in the Horizontal Position with Pipe Sizes of 8 and up to 12 NPS (200 to 300 DN) and Two Control Zones</td>
</tr>
<tr>
<td>14</td>
<td>Minimum Number of Thermocouples (Monitoring and Control) Recommended for Local 360-Degree Band PWHT of a Butt Weld for Piping in the Horizontal Position with Pipe Sizes of 20 and up to 30 NPS (500 to 750 DN) and Four Control Zones</td>
</tr>
<tr>
<td>15</td>
<td>Minimum Number of Monitoring Thermocouples Recommended for a Branch, Nozzle, or Attachment When Heating in Accordance with Figures 6, 7, or 8</td>
</tr>
<tr>
<td>16</td>
<td>Schematic Depiction of Induction Coil Setup</td>
</tr>
<tr>
<td>17</td>
<td>Schematic Depiction of Exothermic Heating of Weld Attaching Slip-On Flange to a Well Casing</td>
</tr>
<tr>
<td>18</td>
<td>Relative Position of Quartz Filament, Reflector, and Workpiece</td>
</tr>
<tr>
<td>19</td>
<td>“Infrared Furnace” of Quartz Lamp Reflector Units Clam-Shelled or Assembled Around a Pipe</td>
</tr>
<tr>
<td>B.1</td>
<td>Bending Stress Decay as a Function of βx, Where x is the Distance from the Edge of the Heater to the Centerline of the Weld</td>
</tr>
<tr>
<td>B.2</td>
<td>Bending Stress Distribution Induced by the Heater Edge, for Heaters of Various Widths</td>
</tr>
<tr>
<td>B.3</td>
<td>Bending Stress at the Heater Centerline Induced by the Heater Edge, for Heaters of Various Widths</td>
</tr>
<tr>
<td>B.4</td>
<td>Bending Stress at the Heater Centerline Induced by an Ideal Heater, for Heaters of Various Widths</td>
</tr>
</tbody>
</table>
Recommended Practices for Local Heating of Welds in Piping and Tubing

1. Scope

These recommended practices describe several methods of applying controlled heat to weld joints and a limited volume of base metal adjacent to the joints, as opposed to heating the complete weldment in a furnace or oven. This standard makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore, each system must be used independently of the other without combining values in any way. U.S. Customary Units are listed first and SI Units are listed second in parentheses () when used in the text.

2. Reference Documents

Extensive reference to local heating requirements found in common piping codes, standards and practices is made to aid the user of this document. These referenced codes, standards and practices are listed below. Except for bake-out and postheating, specific hold temperature and time requirements are not discussed.

2.1 Piping Fabrication Codes

(3) ASME Boiler and Pressure Vessel Code, Section III, Division 1—Subsection NB, Class 1 Components, Rules for Construction of Nuclear Power Plant Components, 1998 Edition. (Note: Although direct reference is made to Subsection NB and its related paragraphs, Subsections NC and ND for Class 2 and 3 components have essentially the same requirements.)

2.2 Repair Codes

2.3 Recommended Practices Regarding Service Environment

(1) Methods and Controls to Prevent In-Service Environmental Cracking of Carbon Steel Weldments in Corrosive Petroleum Refining Environments (NACE RP0472-95), 1995.

(2) Avoiding Environmental Cracking in Amine Units (ANSI/API 945), 1990.

3. Introduction

These recommended practices consider the various issues associated with local heating of welds in piping and tubing. They specifically address application of controlled heat to the weld metal, heat-affected zone (HAZ), and a limited volume of base metal adjacent to the weld, as opposed to heating the entire component (piping or tubing system) in a furnace or oven. The recommended practices generally address issues associated with circumferential butt welds. As such, primary emphasis is given to considering local 360-degree band heating. However, limited consideration of local spot heating is also provided. Although aimed at local heating, various issues common to both local and furnace heating are also discussed.