Recommended Practices for Local Heating of Welds in Piping and Tubing
Abstract

This standard provides information on recommended practices, equipment, temperature control, insulation, and advantages and disadvantages for the methods presently available for local heating of welded joints in pipe and tubing.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be revised, corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the appropriate edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Standards Development (see Annex J). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D10 Committee on Piping and Tubing. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D10 Committee on Piping and Tubing and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D10 Committee on Piping and Tubing to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Foreword

This foreword is not part of this standard but is included for informational purposes only.

This recommended practice is intended to supply useful information to those with a need to apply heat to welds in piping and tubing under circumstances that do not permit placing the entire component in a furnace or oven.

The first edition of the recommended practice prepared by the AWS Committee on Piping and Tubing was approved and published as AWS D10.10-75, Local Heat Treatment of Welds in Piping and Tubing.

The second edition, ANSI/AWS D10.10-90, was revised to bring the document abreast of the present “state-of-the-art,” and to reemphasize certain important topics; particularly, thermocouple selection and placement, proper provision for insulation, and use of the radiant heating methods.

The third edition of D10.10 was extensively revised to: identify/consider related domestic and international codes, standards, and practices; more fully recognize the range of purposes for local heating; introduce terminology for local heating; consider the issues affecting important parameters and provide recommendations for specifying these parameters; consider both local 360° band and spot heating; expand the information regarding thermocouple location, attachment, and accuracy; expand/update the information relating to insulation; expand the information regarding the thermal cycle; identify common process deviations and responses; introduce considerations regarding service environment; introduce quality assurance system considerations; and update and emphasize the heating methods most commonly used. This fourth edition applies to both new construction and repairs.

During preparation of this document, it was attempted to include recommendations based upon the best available, most current data regarding local heating. In most cases, the recommendations given are based upon published research, with extensive references provided. It is acknowledged that in some cases, the resulting recommendations may exceed the prevailing practice within industry, especially domestically. However, it is felt that the objective of this document is to present recommended practices based on an ordered assessment of available research and information, rather than a summary of current practice.

A vertical line in the margin or underlined text in clauses, tables, or figures indicates an editorial or technical change from the 1999 edition.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS D10 Committee on Piping and Tubing, American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166. A formal reply will be issued after it has been reviewed by the appropriate personnel following established procedures.
Table of Contents

Personnel ...v
Foreword ..vii
List of Tables ...xii
List of Figures ...xii

1. **General Requirements** ..1
 1.1 Scope ..1
 1.2 Units of Measurement ...1
 1.3 Safety ..1

2. **Normative References** ..1

3. **Terms and Definitions** ..2

4. **Introduction** ..3

5. **Purposes for Local Heating** ..3
 5.1 Preweld Hydrogen Bakeout ..3
 5.2 Preheat ..4
 5.3 Postweld Hydrogen Bakeout ..5
 5.4 Postweld Heat Treatment (PWHT) ...5

6. **Local 360-Degree Band Heating** ..6
 6.1 Soak Band ..5
 6.2 Heated Band ...9
 6.3 Gradient Control Band ...17
 6.4 Axial Temperature Gradient ...18
 6.5 Summary of Recommendations for SB, HB, GCB, and Axial Temperature Gradient ...19
 6.6 Recommended PWHT Practices ...21

7. **Local Spot PWHT** ...28
 7.1 Requirements in Fabrication and Repair Codes ..30
 7.2 Basis for Current Practices ..30
 7.3 Experience or Analysis to Justify Use ..30

8. **Measurement of Temperature** ...30
 8.1 Temperature-Indicating Crayons and Paints ..31
 8.2 Selection of Thermocouples ...31
 8.3 Installation of Thermocouples ..32
 8.4 Location of Thermocouples ..34
 8.5 Thermocouple Extension Wires ..35
 8.6 Temperature Control and Recording Instruments ..41
 8.7 Accuracy of Thermocouple Temperature Measurements ...42

9. **Insulation** ...42
 9.1 Classification of Insulation ..42
 9.2 Health and Safety Issues Regarding Fiber Respirability ..43
 9.3 Types of Insulation ..44
 9.4 Attachment of Insulation ..44
17.3 Torch Tip Sizes ... 64
17.4 Heated Band... 64
17.5 Flame Adjustment.. 64
17.6 Flame Attitude ... 64
17.7 Protection from the Elements ... 64
17.8 Holding .. 64
17.9 Cooling .. 65
17.10 Suggestions for Setup .. 65
17.11 Relative Advantages and Disadvantages of Flame Heating 65

18. Gas-Flame Generated Infrared Heating .. 65
 18.1 General... 65
 18.2 Fundamentals.. 65
 18.3 Burner Arrangement .. 65
 18.4 Process Control.. 66
 18.5 Sheltering of Thermocouples.. 66
 18.6 Suggestions for Setup .. 66
 18.7 Relative Advantages and Disadvantages of Gas-Flame Generated Infrared Heating 66

19. Radiant Heating by Quartz Lamps ... 66
 19.1 General... 66
 19.2 Description of the Heating Method 67
 19.3 Heater ... 67
 19.4 Thermal Cycle Control .. 67
 19.5 Effect of Work Surface Condition 69
 19.6 Suggestions for Setup .. 70
 19.7 Relative Advantages and Disadvantages of Quartz Lamp Radiant Heating .. 70

20. Comparison of Heating Processes ... 70

Annex A (Informative)—List of References 73
Annex B (Informative)—Discussion of Issues and Recommendations Regarding the Heated Band 75
Annex C (Informative)—Discussion of Stresses Induced During Local 360-Degree Band PWHT 79
Annex D (Informative)—Procedure for Thermocouple Attachment by Capacitor Discharge Welding 91
Annex E (Informative)—Accuracy of Thermocouple Temperature Measurements .. 93
Annex F (Informative)—Information on Types of Insulation ... 95
Annex G (Informative)—Standard Procedure for Local Heating .. 97
Annex H (Informative)—Standard Documentation Checklist for Local Heating ... 101
Annex I (Informative)—Informative References ... 103
Annex J (Informative)—Requesting an Official Interpretation on an AWS Standard 105

List of AWS Documents on Piping and Tubing ... 107
List of Tables

Table	Page No.
6.1 | Comparison of Minimum Preheat Soak Band Widths ... 8
6.2 | Comparison of Minimum PWHT Soak Band Widths ... 8
6.3 | Minimum Recommendations for Local 360-Degree Band PWHT of Girth Welds on Piping in the Horizontal Position Based upon ASME B31.1 and B31.3 Minimum PWHT Soak Band Requirements ... 11
6.4 | Comparison of PWHT Axial Temperature Gradient Control Requirements ... 18
6.5 | Summary of Recommendations for the Soak Band ... 20
6.6 | Summary of Recommendations for HB, GCB, and Axial Temperature Gradient 20
6.7 | Recommended Number of Control Zones and Thermocouple Locations for PWHT of Piping in the Horizontal Position .. 23
8.1 | Thermocouple Data ... 31
8.2 | Recommended Locations of Monitoring Thermocouples for Local 360-Degree Band PWHT 35
9.1 | Comparison of the Characteristics of Commonly Used Insulation Materials 44
11.1 | Comparison of Maximum Rates of Heating and Cooling During PWHT .. 47
13.1 | Summary of Key Parameters for Induction Heating Stress Improvement (IHSI) 55
19.1 | Typical Quartz Lamps ... 69
20.1 | Comparison of Heating Processes ... 71

List of Figures

Figure	Page No.
6.1 | Schematic Diagram for Description of Local PWHT 360-Degree Band Heating 7
6.2 | Example of Parameters for Local 360-Degree Band Hydrogen Bakeout of a Butt Weld in a NPS 12 [DN 300], 1 in [25 mm] Wall Thickness Pipe ... 21
6.3 | Example of Parameters for Local 360-Degree Band Preheat of a Butt Weld in an NPS 12 [DN 300], 1 in [25 mm] Wall Thickness Pipe ... 22
6.4 | Example of Parameters for Local 360-Degree Band PWHT of a Butt Weld in an NPS 12 [DN 300], 1 in [25 mm] Wall Thickness Pipe ... 22
6.5 | Local 360-Degree Band PWHT Practice for Branch Connection to Pipe Attachment Weld 25
6.6 | Local 360-Degree Band PWHT Practice for Nozzle to Pipe Attachment Weld 26
6.7 | Local 360-Degree Band PWHT Practice for Structural Pad/Clip Attachment Weld 27
6.8 | Example of One Approach When the Heated Band From a Weld Requiring PWHT Intersects a Weld Not Requiring PWHT ... 29
8.1 | Schematic Representation of Equipment Used to Directly Attach Thermocouples by Capacitor Discharge Welding ... 33
8.2 | Schematic Representation of the Direct Attachment, Separated Junction Method for Thermocouple Attachment ... 33
8.3 | Minimum Number of Thermocouples (Monitoring and Control) Recommended for Local 360-Degree Band PWHT of a Butt Weld for Piping in the Horizontal Position with Pipe Size up to NPS 6 [DN 150] and One Control Zone .. 36
8.4 | Minimum Number of Thermocouples (Monitoring and Control) Recommended for Local 360-Degree Band PWHT of a Butt Weld for Piping in the Horizontal Position with Pipe Sizes of NPS 8 and up to NPS 12 [DN 200 to DN 300] and Two Control Zones .. 37
8.5 Minimum Number of Thermocouples (Monitoring and Control) Recommended for Local 360-Degree Band PWHT of a Butt Weld for Piping in the Horizontal Position with Pipe Sizes from NPS 14 and up through NPS 18 [DN 350 to DN 450] and Three Control Zones .. 38
8.6 Minimum Number of Thermocouples (Monitoring and Control) Recommended for Local 360-Degree Band PWHT of a Butt Weld for Piping in the Horizontal Position with Pipe Sizes of NPS 20 and up to NPS 30 [DN 500 to DN 750] and Four Control Zones .. 39
8.7 Minimum Number of Monitoring Thermocouples Recommended for a Branch, Nozzle, or Attachment When Heating in Accordance with Figures 6.5, 6.6, or 6.7 ... 40
15.1 Schematic Depiction of Induction Coil Setup .. 58
19.1 Relative Position of Quartz Filament, Reflector, and Workpiece .. 68
19.2 “Infrared Furnace” of Quartz Lamp Reflector Units Clam-Shelled or Assembled Around a Pipe 68
C.1 Bending Stress Decay as a Function of βx, Where x is the Distance from the Edge of the Heater to the Centerline of the Weld .. 81
C.2 Bending Stress Distribution Induced by the Heater Edge, for Heaters of Various Widths 84
C.3 Bending Stress at the Heater Centerline Induced by the Heater Edge, for Heaters of Various Widths 85
C.4 Bending Stress at the Heater Centerline Induced by an Ideal Heater, for Heaters of Various Widths 87
Recommended Practices for Local Heating of Welds in Piping and Tubing

1. General Requirements

1.1 Scope. These recommended practices describe several methods of applying controlled heat to weld joints and a limited volume of base metal adjacent to the joints, as opposed to heating the complete weldment in a furnace or oven. Additional criteria (e.g., thermocouple requirements, temperature requirements, heat placement) may be required for Creep Strength-Enhanced Ferritic (CSEF) Steels. The applicable code or standard shall take precedence in the event of conflict with this standard.

The primary purpose for the requirements in this document is to ensure that the root of the weld at the inside diameter (ID) of the pipe or tube achieves minimum postweld heat treatment (PWHT) temperature.

1.2 Units of Measurement. This standard makes use of both U.S. Customary Units and the International System of Units (SI). The latter are shown within brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.

Units used for dimensions shall be consistent within any given formula.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed herein.

Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes

(2) AWS Safety and Health Fact Sheets

(3) Other safety and health information on the AWS website.

Material or Equipment Manufacturers:

(1) Safety Data Sheets supplied by materials manufacturers

(2) Operating Manuals supplied by equipment manufacturers.

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

2. Normative References

The documents listed below are referenced within this publication and are mandatory to the extent specified herein. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments or revisions of the publications may not apply since the relevant requirements may have changed.