Guide for Multipass Orbital Machine Pipe Groove Welding
Abstract

Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. Users should ensure that they have the latest edition.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

Finally, the AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex A). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D10 Committee on Piping and Tubing. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D10 Committee on Piping and Tubing and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D10 Committee on Piping and Tubing to express their comments. verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Personnel

AWS D10 Committee on Piping and Tubing

M. P. Lang, Chair Bechtel Corporation
W. F. Newell, Vice Chair W. F. Newell & Associates, Incorporated
B. C. McGrath, Secretary American Welding Society
T. Anderson ITW Welding North America
R. E. Avery Nickel Institute
W. L. Ballis Consultant
A. S. Beckett Alyeska Pipeline Service Company
C. J. Bloch Quality Hill Corporation
D. Brown Applied Energy Systems, Incorporated
W. A. Bruce CC Technologies
D. Ciarlariello Mannings USA
K. K. Coleman Electric Power Research Institute
J. G. Emmerson Magnatech LLC
A. L. Farland Brookhaven National Lab
S. J. Findlan Shaw Power Group
D. A. Flood TRI TOOL INC
G. J. Frederick Electric Power Research Institute
R. Gatlin Global Industries
B. K. Henon Arc Machines, Incorporated
J. Hill Quality Hill Corporation
D. C. Klingman The Lincoln Electric Company
M. J. Ludwig Bath Iron Works
B. B. MacDonald United Association
P. A. Michalski Dominion East Ohio
J. S. Pastorok Shaw Power Group
E. Piet Med-Con
M. Porter TRI TOOL INC
W. L. Roth Proctor and Gamble, Incorporated
W. J. Sperko Sperko Engineering Services
P. A. Tews Subsea 7
J. Tidwell Fluor Daniel, Incorporated
D. J. Tillack Tillack Metallurgical Consulting

Advisors to the AWS D10 Committee on Piping and Tubing

C. J. Bishop Airgas Medical Services, Incorporated
H. W. Ebert Consulting Welding Engineer
G. K. Hickox Consultant
J. R. Scott Pioneer Pipe, Incorporated

AWS Subcommittee D10U on Orbital Welding

P. A. Tews, Chair Subsea 7
B. C. McGrath, Secretary American Welding Society
J. G. Emmerson Magnatech LLC
D. A. Flood TRI TOOL INC
R. Gatlin Global Industries
B. K. Henon Arc Machines, Incorporated
M. Porter TRI TOOL INC

Advisors to the AWS Subcommittee D10U on Orbital Welding

K. F. Brazzell Encompass Machines, Incorporated
W. L. Roth The Procter and Gamble Company
This page is intentionally blank.
Foreword

This foreword is not part of AWS D10.14M/D10.14:2010, Guide for Multipass Orbital Machine Pipe Groove Welding, but is included for informational purposes only.

This document was created as a result of the recognized need to bring together a description of the various technologies combined in orbital multipass machine pipe groove welding. This document should be of benefit to readers wishing to familiarize themselves with the mechanized orbital pipe welding option to manual or semiautomatic pipe groove welding.
This page is intentionally blank.
Table of Contents

Personnel ... v
Foreword .. vii
List of Tables ... xi
List of Figures .. xi

1. **Scope** .. 1
2. **Normative References** ... 1
3. **Terms and Definitions** ... 2
4. **General Description of Orbital Machine Pipe Groove Welding Equipment** 4
 4.1 Components ... 4
 4.2 Typical Systems ... 5
 4.3 Welding Processes Used for Multipass Orbital Machine Pipe Groove Welding 8
5. **Pipe Beveling** .. 15
 5.1 Overview ... 15
 5.2 Inside Diameter I.D. Mounted Pipe Beveling Machines ... 19
 5.3 Outside Diameter O.D. Mounted Machines for Inline Severing and Beveling 25
 5.4 Tool Holders .. 27
 5.5 Tools .. 27
6. **Line-up Clamps** .. 28
 6.1 Internal Line-up Clamps with Copper Backup Shoes .. 29
 6.2 Internal Line-up Clamps with Internal Welding Torches ... 32
7. **External Weld Heads** .. 32
 7.1 Overview ... 32
 7.2 Types of External Weld Heads .. 35
 7.3 Joint Tracking .. 36
8. **Nondestructive Examination** .. 38
 8.1 Surface NDE ... 38
 8.2 Volumetric Inspection ... 38
9. **Multipass Orbital Machine Pipe Groove Welding of Plant Piping** .. 40
 9.1 Overview ... 40
 9.2 General Considerations ... 40
 9.3 Preweld Preparations ... 45
 9.4 Production Rates for Plant Piping ... 48
10. **Multipass Orbital Machine Pipe Groove Welding of Cross-Country Pipelines** 48
 10.1 Overview ... 48
 10.2 Production Rates for Cross Country Pipeline Welding ... 52
 10.3 Welding Training ... 53
 10.4 Weld Defects ... 53
List of Tables

Table	Page No.
1 | Arc Welding Process Summary for Steel Pipe

List of Figures

Figure	Page No.
1 | Typical Orbital Machine Pipe Groove Welding Clamshell Head
2 | Typical Orbital Machine Pipe Groove Welding System Performing Cross-Country Pipe Welding
3 | Typical Orbital Machine Pipe Groove Welding System Performing Offshore S-Lay Pipe Welding
4 | Typical Orbital Machine Pipe Groove Welding System Performing Offshore J-Lay Pipe Welding
5 | Typical Orbital Machine Pipe Groove Welding System Performing Offshore Reel Lay Pipe Welding
6 | ASME Joint Designs for Process Plant Pipe Groove Welding
7 | Joint Designs for Transmission Pipe Groove Welding
8 | AWS Terminology for Parts of a Butt Joint Bevel and Weld Joint Mismatch
9 | Material Removal Requirement for Compound Bevels
10 | Standard Transitions and Counterbores
11 | Pneumatic Motor Driven Internal Mount Pipe Beveling Machine for DN 50 to DN 150 [NPS 2 to NPS 6]
12 | Pneumatic Motor Driven Internal Mount Pipe Beveling Machine for DN 200 to DN 600 [NPS 8 to NPS 24]
13 | Electric Motor Driven Internal Mount Pipe Beveling Machine
14 | Hydraulic Motor Driven Internal Mount Pipe Beveling Machine
15 | Pneumatic Motor Driven External Mount Pipe Beveling Machine for DN 50 to DN 150 [NPS 2 to NPS 6]
16 | Pneumatic Motor Driven External Mount Pipe Beveling Machines for DN 300 to DN 400 [NPS 12 to NPS 16] and DN 650 to DN 750 [NPS 26 to NPS 30]
17 | External Pipe Line-up Clamp
18 | Internal Pipe Line-up Clamp
19 | Copper Backup Shoes on Internal Pipe Line-up Clamp
20 | Internal Pipe Line-up Clamp with GMA Weld Heads
21 | Orbital GTA Weld Head with Torch Tilt Welding a Titanium Joint
22 | Single Torch Orbital GTAW-P Weld Head in Use on Stainless Piping
23 | Double-up FCAW Technique using 2 Heads on Cross-Country Pipeline
24 | Principle of Through-the-Arc Joint Tracking
25 | Typical Orbital Machine Pipe Groove Welding Head and on Rotating Face Plate used for Plant Pipe Welding
26 | Typical Orbital Machine Pipe Groove Welding Head and Guide Band used for Plant Pipe Welding
27 | Typical Orbital Machine Pipe Groove Welding Head and Guide Band used for Plant Pipe Welding
28 | Typical Orbital Machine Pipe Groove Welding Cross-Country Pipe Welding Spread
29 | Typical Cross-Country Welding Shelter
This page is intentionally blank.
Guide for Multipass Orbital Machine Pipe Groove Welding

1. Scope

The scope of this document is multipass, orbital machine pipe groove welding of pipe by arc fusion processes with filler metal addition. The orbital machines described in this document are typically used to weld pipe in plants, such as power generation plants or chemical processing plants, and to weld transmission pipelines, both cross-country and offshore. Offshore pipeline construction includes “S-lay,” “J-lay,” and “Reel-lay.” Each of these will be described in further detail.

This guide is organized into sections describing welding processes, pipe beveling, pipe line-up, weld heads, nondestructive examination, plant pipe welding, cross-country welding, “S-lay” welding, “J-lay” welding, and finally reel lay welding. The guide concludes with a brief description of methods used to estimate consumable usage, engineering critical assessments, methods to calculate maximum repair lengths, and safety.

This document excludes orbital tube welding, which is addressed by AWS D18.1, Specification for Welding of Austenitic Stainless Steel Tube and Pipe Systems in Sanitary (Hygienic) Applications.

This document presents an overview of multipass orbital machine pipe groove welding including the welding processes, pipe beveling equipment, pipe line-up equipment, welding equipment, and nondestructive examination equipment. This document includes the steps required to prepare for and use multipass, orbital machine pipe groove welding equipment.

The alternative to multipass orbital machine pipe groove welding is manual welding, which includes welding with a torch, gun, or electrode held and manipulated by hand. Orbital machine welding is a form of mechanized welding which offers an alternative to manual welding when the investment in mobilization and equipment costs can be offset by productivity gains. The goal of this guide is to familiarize the reader with the orbital machine alternative to manual welding.

This standard makes use of both the International System of Units and U.S. Customary Units. The latter are shown within brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.

Safety and health issues and concerns are beyond the scope of this standard and therefore are not fully addressed herein. Safety and health information is available from other sources, including, but not limited to, ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes, AWS Safety and Health Fact Sheets (see Annex B) and applicable federal and state regulations.

2. Normative References

The following standards contain provisions which, through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

AWS documents:

AWS A2.4, Standard Symbols for Welding, Brazing and Nondestructive Examination

1 AWS standards are published by the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.