Abstract

This specification establishes common acceptance criteria for classifying and applying carbon and low-alloy steel welded joints used in the manufacture of machines and equipment. It also covers weld joint design, workmanship, quality control requirements and procedures, weld joint inspection, nondestructive testing, repair of weld defects, and postweld treatment.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex C). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D14 Committee on Machinery and Equipment. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D14 Committee on Machinery and Equipment and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D14 Committee on Machinery and Equipment to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Foreword

This foreword is not part of this standard but is included for informational purposes only.

In 1967, the Technical Activities Committee of AWS established a technical committee to provide standards and recommended practices for the welding and fabrication of industrial equipment and machinery. The scope of that technical committee, identified as D14 committee, was to collect, review, and promulgate minimum requirements considered necessary for the control of welding in the fabrication of industrial machinery and equipment. This included weld design data, welding process selection, materials control, fabrication practices, quality standards, inspection and testing. The committee determined that a single universal standard and guide covering all machinery and equipment was impractical due to differences in utilization and operational requirements. Therefore, it became the policy of the D14 committee to establish subcommittees as may be required to consider specific types of machinery and equipment within the scope of the main committee. A listing of the subcommittees for D14 at the time of approval of this document is as follows:

D14B – Subcommittee on General Design and Practices
D14C – Subcommittee on Earthmoving and Construction Equipment
D14E – Subcommittee on Welding Cranes and Presses
D14G – Subcommittee on Welding Rotating Equipment
D14H – Subcommittee on the Surfacing of Industrial Rolls and Equipment
D14I – Subcommittee on Hydraulic Cylinders

The first edition of this Standard was published in 1977 to provide a standard for the classification of welded joints for machinery and equipment. It included weld joint design, welding fabrication practices, quality control, and inspection indices to meet general machinery performance requirements. Over time, other standards for specific areas in the machinery and equipment field were developed by the D14 committee (see list on back page of this document) and this standard then served as a supplement to these standards and continued to provide a basis for other areas in the machinery and equipment field not served by a specific standard. This standard was revised in 1997, 2005, and 2012. Today, this standard is still intended to be referenced by all D14 standards as applicable.

Thus, as the purpose of this document has undergone a subtle change, the committee has changed the title of this document to Specification for the Design of Welded Joints in Machinery and Equipment from its former titles of Specification for Welded Joints in Machinery and Equipment and Classification and Application of Welded Joints for Machinery and Equipment.

The purpose of this Specification is not to restrict the use of other proven methods and procedures for welding machinery and equipment. Where such methods and procedures exist, this Specification should be referenced as a supplement.

This fifth edition has been expanded to include terminology and references to numerous ISO, EN and IIW documents to better establish global relevancy and usage of this Specification throughout all International markets. To aid in communication, when appropriate, international terms shall be included in brackets “[]”, as stated in clause 1.5.

Underlined text or a vertical line in the margin indicates a change from the previous edition.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS D14 Committee on Machinery and Equipment, American Welding Society, 8669 NW 36th St #130, Miami, FL 33166.

This document will be reviewed periodically to assure its success in serving all parties concerned with its provisions. Revisions will be issued when warranted.
Table of Contents

Personnel ... v
Foreword ... vi
List of Tables ... vii
List of Figures ... xi

1. General Requirements
- 1.1 Scope ... 1
- 1.2 Limitations ... 1
- 1.3 Units of Measurement ... 1
- 1.4 Safety .. 1
- 1.5 International Usage ... 1
- 1.6 Engineer Responsibility .. 1

2. Normative References .. 2

3. Terms and Definitions .. 4

4. General Design Requirements .. 5
- 4.1 Weldment Classifications .. 5
- 4.2 Weld Classifications ... 5
- 4.3 Loading Classification ... 5
- 4.4 Combined Unit Stresses .. 6
- 4.5 Fracture Toughness Requirements 6
- 4.6 Filler Metals ... 6
- 4.7 Nondestructive Testing .. 6
- 4.8 Requirements for Secondary Welds 6

5. Welded Connection Design .. 6
- 5.1 Joint Details ... 6
- 5.2 Transition of Thicknesses or Widths at Butt Joints 6
- 5.3 Lap Joints .. 6
- 5.4 Complete Joint Penetration (CJP) Groove Welds [Butt Welds] 8
- 5.5 Partial Joint Penetration (PJP) Groove Welds [Butt Welds] 10
- 5.6 Fillet Weld Details .. 11
- 5.7 Details of Plug and Slot Welds 11
- 5.8 Combinations of Welds .. 14
- 5.9 Effective Weld Areas, Lengths, and Sizes 15
- 5.10 Principal Structural Weldments-General 17
- 5.11 Cyclically Loaded Principal Structural Weldments 17
- 5.12 Prohibited Joints and Welds in Principal Structural Weldments 17
- 5.13 Prohibited Joints and Welds in Cyclically Loaded Principal Structural Weldments 27
- 5.14 Welds In Combination with Rivets and Bolts 27
- 5.15 Eccentricity of Connections 28
- 5.16 Connections and Splices in Compression Members 28
- 5.17 Splices in Girders and Beams 28
- 5.18 Detailing of Splices .. 28
- 5.19 Connections of Components of Built-Up Members 28

5.20 Stiffeners .. 28
5.21 Built-Up Sections .. 29
5.22 Cover Plates .. 29
5.23 Fillers .. 29
5.24 Beam Copes and Weld Access Holes 30

6. Workmanship .. 31
6.1 General .. 31
6.2 Preparation of Materials 31
6.3 Assembly ... 31

7. Welding Procedure and Performance Qualification 34
7.1 General .. 34
7.2 AWS Standard Welding Procedure Specifications (SWPS) ... 34
7.3 Previous Editions ... 34
7.4 AWS D14 Specifications 34
7.5 ISO Welding Procedure Specifications 35
7.6 ISO Welder Performance Qualifications 35

8. Inspection .. 35
8.1 Visual Inspection .. 35
8.2 Radiographic Testing .. 40
8.3 Ultrasonic Testing ... 49
8.4 Magnetic Particle Testing 61
8.5 Liquid Penetrant Testing 61

9. Repair ... 62
9.1 Weld Repairs ... 62
9.2 Base-Metal Repairs ... 62
9.3 Repair Procedure ... 64

10. Postweld Treatments ... 65
10.1 Introduction .. 65
10.2 Thermal Residual Stress Reduction 65
10.3 Peening .. 66
10.4 Vibratory Conditioning 66

Annex A (Normative) — Illustrative Examples of Prohibited Joints and Welds 67
Annex B (Informative) — Typical Weld Joints Details .. 71
Annex C (Informative) — Requesting an Official Interpretation on an AWS Standard 105
Annex D (Informative) — Informative References 107

List of AWS Documents on Machinery and Equipment .. 109
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Minimum Weld Size for Partial Joint Penetration Groove Welds [Butt Welds]</td>
</tr>
<tr>
<td>5.2</td>
<td>Minimum Single Pass Fillet Weld Size for Heat Input</td>
</tr>
<tr>
<td>5.3</td>
<td>Minimum Size Double Fillet Welds to Develop Full Strength</td>
</tr>
<tr>
<td>5.4</td>
<td>Z-Loss Dimensions (Nontubular)</td>
</tr>
<tr>
<td>5.5</td>
<td>Z-Loss Dimensions for Calculating PJP T-, Y-, and K-Tubular Connection Minimum Weld Sizes</td>
</tr>
<tr>
<td>5.6</td>
<td>Effective Size of Flare-Groove Welds [Butt Welds] Filled Flush</td>
</tr>
<tr>
<td>5.7</td>
<td>Allowable Stresses</td>
</tr>
<tr>
<td>5.8</td>
<td>Fatigue Stress Design Parameters</td>
</tr>
<tr>
<td>5.9</td>
<td>Allowable Fatigue Stress Range</td>
</tr>
<tr>
<td>6.1</td>
<td>Heat Input Calculations</td>
</tr>
<tr>
<td>8.1</td>
<td>Acceptance Criteria for Inspection</td>
</tr>
<tr>
<td>8.2</td>
<td>Nondestructive Testing and Visual Inspection Requirements</td>
</tr>
<tr>
<td>8.3</td>
<td>Standard Hole-Type and Wire Image Quality Indicator Requirements</td>
</tr>
<tr>
<td>8.4</td>
<td>Examples of Acceptable Indications</td>
</tr>
<tr>
<td>9.1</td>
<td>Limits on Acceptability and Repair of Cut Edge Discontinuities of Plate</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Toe Reentrant Angle, Groove and Fillet Welds</td>
</tr>
<tr>
<td>5.1</td>
<td>Transition of Thickness at Butt Joints of Parts Having Unequal Thickness</td>
</tr>
<tr>
<td>5.2</td>
<td>Transition of Width at Butt Joints of Parts Having Unequal Width</td>
</tr>
<tr>
<td>5.3</td>
<td>Minimum Overlap Distance</td>
</tr>
<tr>
<td>5.4</td>
<td>Transverse Lines of Plug or Slot Welds</td>
</tr>
<tr>
<td>5.5</td>
<td>Longitudinal Fillet Welds in Holes</td>
</tr>
<tr>
<td>5.6</td>
<td>Minimum Length of Longitudinal Fillet Welds at the End of a Plate or Flat Bar Members</td>
</tr>
<tr>
<td>5.7</td>
<td>Distance to the Edge for Fillet Welds in Slots or Holes</td>
</tr>
<tr>
<td>5.8</td>
<td>Details for Fillet Welds</td>
</tr>
<tr>
<td>5.9</td>
<td>Fillet Welds on Opposite Sides of a Common Plane of Contact</td>
</tr>
<tr>
<td>5.10</td>
<td>Skewed T-Joints</td>
</tr>
<tr>
<td>5.11</td>
<td>Combination of Bevel Groove and Fillet Weld Profiles</td>
</tr>
<tr>
<td>5.12</td>
<td>Allowable Stress Range for Cyclically Applied Load (Fatigue) – US Customary Units</td>
</tr>
<tr>
<td>5.13</td>
<td>Allowable Stress Range for Cyclically Applied Load (Fatigue) – SI Units</td>
</tr>
<tr>
<td>5.14</td>
<td>Splices or Connections with Fillers Less Than 1/4 in [6 mm] Thick</td>
</tr>
<tr>
<td>5.15</td>
<td>Splices or Connections with Fillers 1/4 in [6 mm] or Thicker</td>
</tr>
<tr>
<td>5.16</td>
<td>Eccentric Connection</td>
</tr>
<tr>
<td>6.1</td>
<td>Workmanship Tolerances in Assembly of Groove [Butt] Welded Joints</td>
</tr>
<tr>
<td>8.1</td>
<td>Acceptable and Unacceptable Weld Profiles</td>
</tr>
<tr>
<td>8.2</td>
<td>Radiographic Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints 10 in [250 mm] and Greater in Length</td>
</tr>
</tbody>
</table>
8.3 Radiographic Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints Less Than 10 in [250 mm] in Length 43
8.4 Radiographic Identification and Hole-Type or Wire IQI Locations on Transition Joints 10 in [250 mm] and Greater in Length 43
8.5 Radiographic Identification and Hole-Type or Wire IQI Locations on Transition Joints Less Than 10 in [250 mm] in Length 44
8.6 Examples of Aligned Rounded Indications .. 46
8.7 Examples of Groups of Aligned Rounded Indications ... 47
8.8 Charts for Thickness Equal to 1/8 in [3 mm] to 1/4 in [6 mm], Inclusive 47
8.9 Charts for Thickness Over 1/4 in [6 mm] to 3/8 in [10 mm], Inclusive 48
8.10 Charts for Thickness Over 3/8 in [10 mm] to 3/4 in [20 mm], Inclusive 48
8.11 Charts for Thickness Over 3/4 in [20 mm] to 2 in [50 mm], Inclusive 49
8.12 Charts for Thickness Over 2 in [50 mm] to 4 in [100 mm], Inclusive 50
8.13 Charts for Thickness Over 4 in [100 mm] ... 51
8.14 70° Calibration Standard .. 52
8.15 60° Calibration Standard .. 53
8.16 45° Calibration Standard .. 54
8.17 Typical Screen Calibration .. 56
8.18 Test Procedure—CJP Groove Weld [Butt Weld] in Butt Joints 57
8.21 Method of Detecting Longitudinal Discontinuities in CJP Groove Welds [Butt Welds] in Corner Joints Not Ground Flush 58
9.1 Edge Discontinuities in Cut Material .. 64
A.1 Prohibited Joints and Welds on Principal Structural Weldments 67
A.2 Prohibited Joints and Welds – Cyclically Loaded – on Principal Structural Weldments 68
A.3 Prohibited Joints and Welds – Cyclically Loaded – on Principal Structural Weldments 69
B.1 Typical Complete Joint Penetration Groove Welded [Butt Welded] Joints 72
Specification for the Design of Welded Joints in Machinery and Equipment

1. General Requirements

1.1 Scope. This specification establishes design, quality, and inspection requirements for carbon and low-alloy steel welded connections in machinery and equipment. It addresses topics including weld joint design, workmanship, quality acceptance criteria, non-destructive inspection methods (visual, radiographic, ultrasonic, magnetic particle, and liquid penetrant), repair of weld defects, and heat treatment.

1.2 Limitations. This specification does not dictate load determination, design assumptions, safety factors, or calculation methods. It is not the intent of this specification to restrict the use of other proven welding methods and procedures that are not mentioned herein, which achieve acceptable results as determined by the Engineer. In the case where this specification is used between the Owner and Manufacturer, the use of other proven welding methods and procedures that are not mentioned herein shall be agreed to in writing by the Owner and Manufacturer.

1.3 Units of Measurement. This standard makes use of both U.S. Customary Units and the International System of Units (SI). The latter are shown within brackets [] or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.

1.4 Safety. Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed herein.

Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes

(2) AWS Safety and Health Fact Sheets

(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Safety Data Sheets supplied by materials manufacturers

(2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

1.5 International Usage. This specification includes terms and symbols that are more commonly used outside of the North American market. These terms are shown in brackets [] when used in the specification.

1.6 Engineer Responsibility.

1.6.1 The ‘Engineer’ in this document shall have specific technical expertise in welding engineering or design engineering; the expertise is not limited to these two areas of engineering. Unless otherwise specified in the contract