Specification for Fusion Welding for Aerospace Applications
Abstract

This specification provides the general welding requirements for welding aircraft and space hardware. It includes but is not limited to the fusion welding of aluminum-based, nickel-based, iron-based, cobalt-based, magnesium-based, and titanium-based alloys using electric arc and high energy beam processes. There are requirements for welding design, personnel and procedure qualification, inspection, and acceptance criteria for aerospace, support and non-flight hardware. Additional requirements cover repair welding of existing hardware. A commentary for the specification is included.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. This standard may also be corrected through publication of amendments or errata. It may also be supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda are posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

The AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex F). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D17 Committee on Welding in the Aircraft and Aerospace Industries. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D17 Committee on Welding in the Aircraft and Aerospace Industries and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D17 Committee on Welding in the Aircraft and Aerospace Industries to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Personnel (Amendment)

AWS D17 Committee on Welding in the Aircraft and Aerospace Industries

S.H. Murray, Chair NASA-Kennedy Space Center
G.W. Coleman, 1st Vice Chair The Boeing Company
D.S. Ponder, 2nd Vice Chair Triumph Airborne Structures
R. J. Ding, 3rd Vice Chair NASA-Marshall Space Flight Center
A. L. Diaz, Secretary American Welding Society
J. T. Amin Lockheed Martin Aeronautics Corporation
R. P. Beil Northrop Grumman Corporation
C. Carl NASA-Kennedy Space Center
P. Daum Rolls-Royce Corporation
H. S. Dilcher, III Lockheed Martin Aeronautics Corporation
R. J. Durda Spirit AeroSystems
J. Fourner Pratt & Whitney Canada
E. C. Helder General Electric Aircraft Engines (Retired)
D. Lindland Pratt & Whitney
R. B. Maust, III Raytheon Integrated Defense Systems
M. C. Nordin Rolls Royce Corporation
N. D. Rindal Exotic Metals Forming Company, LLC.
M. E. Sapp NAVAIR In-Service Support Center-Cherry Point
C. Sauer NAVAIR In-Service Support Center-Cherry Point
W. R. Schell Boeing Research & Technology
D. A. Senatore Walco, Incorporated
G. J. Stahle National Alabama Corporation
I. R. Thyssen General Electric Aviation
G. E. Trepus The Boeing Company

Advisors to the AWS D17 Committee on Welding in the Aircraft and Aerospace Industries

D. E. Bell Boeing Product Standards
H. D. Bushfield Bushfield and Associates
P. J. Cecil Spirit AeroSystems
W. Collier Delta Airlines TechOps
R. Freeman TWI-The Welding Institute
W. P. Garrison Pratt & Whitney
A. Guinasso The Boeing Company
I. D. Harris Edison Welding Institute
J. B. Jackson NASA-Safety Center
E. M. Lorence Aircraft Welding & Manufacturing Corporation, LLC.
G. Loy-Kraft Oklahoma City Air Logistics Center, U.S. Air Force
M. J. Lucas, Jr. Belcan Corporation
A. Openshaw Atlantic Research Corporation
J. B. Pearson, Jr. LTK Engineering Services
C. K. Russell NASA-Marshall Space Flight Center
J. G. Vollmer Boeing Satellite Systems
M. E. Webber Raytheon Integrated Defense Systems
B. D. Wright Advantage Aviation Technologies
AWS D17K Subcommittee on Fusion Welding

C. Carl, Chair NASA-Kennedy Space Center
D. A. Senatore, 1st Vice Chair Walco, Inc.
G. E. Trepus, 2nd Vice Chair The Boeing Company
A. L. Diaz, Secretary American Welding Society
J. T. Amin Lockheed Martin Aeronautics Corporation
R. P. Beil Northrop Grumman Corporation
R. C. Carver ATK Launch Systems
G. W. Coleman The Boeing Company
P. Daum Rolls-Royce Corporation
H. S. Dilcher, III Lockheed Martin Aeronautics Corporation
M. W. Elsemore The Boeing Company
W. Guo Honeywell
D. Lindland Pratt & Whitney
R. B. Maust, III Raytheon Integrated Defense Systems
L. D. Morris Raytheon Integrated Defense Systems
S. H. Murray NASA-Kennedy Space Center
M. C. Nordin Rolls Royce Corporation
N. D. Rindal Exotic Metals Forming Company, LLC.
G. T. Rolla Advanced Weldtec, Incorporated
M. E. Sapp NAVAIR In-Service Support Center-Cherry Point
C. Sauer NAVAIR In-Service Support Center-Cherry Point
J. R. Thysse General Electric Aviation
B. D. Worley General Electric Aviation

Advisor to the AWS D17K Subcommittee on Fusion Welding

W. Collier Delta Airlines TechOps
R. Freeman TWI-The Welding Institute
W. P. Garrison Pratt & Whitney
E. C. Helder General Electric Aircraft Engines (Retired)
J. B. Jackson NASA-Safety Center
E. M. Lorence Aircraft Welding & Manufacturing Corporation, LLC.
G. Loy-Kraft Oklahoma City Air Logistics Center, U.S. Air Force
J. B. Pearson, Jr. LTK Engineering Services
L. P. Perkins United States Air Force
D. S. Ponder Triumph Airborne Structures
C. K. Russell NASA-Marshall Space Flight Center
J. G. Vollmer Boeing Satellite Systems
B. D. Wright Advantage Aviation Technologies
D. A. Wright Wright Welding Technologies
Personnel (Original)

AWS D17 Committee on Welding in the Aircraft and Aerospace Industries

S. H. Murray, Chair
G. W. Coleman, 1st Vice Chair
D. S. Ponder, 2nd Vice Chair
R. J. Ding, 3rd Vice Chair
M. C. Rubin, Secretary
J. T. Amin
R. Beil
P. J. Cecil
P. Daum
H. S. Dilcher, III
R. J. Durda
J. Fournier
E. C. Helder
D. Lindland
R. B. Maust, III
M. C. Nordin
M. E. Sapp
C. Sauer
W. R. Schell
D. Senatore
G. E. Trepus
J. G. Vollmer

Advisors to the AWS D17 Committee on Welding in the Aircraft and Aerospace Industries

D. E. Bell
H. D. Bushfield
W. Collier
R. Freeman
W. P. Garrison
A. Guinasso
I. D. Harris
J. B. Jackson
E. M. Lorence
G. Loy-Kraft
M. J. Lucas, Jr.
A. Openshaw
J. B. Pearson, Jr.
C. K. Russell
G. J. Stahle
M. E. Webber
B. D. Wright

AWS D17K Subcommittee on Fusion Welding

R. P. Beil, Chair
J. T. Amin, Vice Chair
D. A. Senatore, 2nd Vice Chair
M. C. Rubin, Secretary

Northrop Grumman Corporation
Lockheed Martin Aeronautics Company
Walco, Incorporated
American Welding Society
C. Carl NASA—Kennedy Space Center
P. J. Cecil The Boeing Company
G. W. Coleman The Boeing Company
P. E. Daum Rolls-Royce Corporation
H. S. Dilcher, III Lockheed Martin Aeronautics Company
M. W. Elsemore The Boeing Company
E. C. Helder GE Aircraft Engines (Retired)
D. Lindland Pratt & Whitney
M. J. Lucas, Jr. Belcan Engineering
R. B. Maust, III Raytheon Integrated Defense Systems
L. D. Morris Raytheon Corporation
S. H. Murray NASA—Kennedy Space Center
D. S. Ponder Triumph Airborne Structures
M. E. Sapp NAVAIR In-Service Support Center—Cherry Point
C. Sauer NAVAIR In-Service Support Center—Cherry Point
G. E. Trepus Boeing Commercial Airplanes

Advisors to the AWS D17K Subcommittee on Fusion Welding

L. M. Bower Blackhawk Technical College
W. Collier Delta Airlines Technical Operations
R. Freeman TWI-The Welding Institute
W. P. Garrison Pratt and Whitney
J. B. Jackson NASA—Glenn Research Center
E. M. Lorence Aircraft Welding & Manufacturing Company
G. Loy – Kraft Oklahoma Air Logistics Center, Tinker AFB
L. P. Perkins USAF
C. K. Russell NASA—Marshall Space Flight Center
J. G. Vollmer The Boeing Company
B. D. Wright Advantage Aviation Technologies
D. A. Wright Wright Welding Technologies
Table of Contents

Personnel (Amendment) ... v
Personnel (Original) ... vii
Foreword .. ix
List of Tables ... xv
List of Figures ... xv

1. Scope and General Requirements .. 1
 1.1 Scope ... 1
 1.2 Classification ... 1
 1.3 Approval .. 2
 1.4 Mandatory Provisions and Authority 2
 1.5 Standard Units of Measure .. 2
 1.6 Safety and Health .. 2

2. Normative References .. 2
 2.1 Government Documents .. 2
 2.2 Nongovernment Documents .. 3

3. Terms and Definitions .. 4

4. Design of Welded Connections ... 6
 4.1 Scope ... 6
 4.2 Weldment Design Data .. 6
 4.3 General Drawing Requirements .. 6

5. Welding Performance and Procedure Qualification 7
 5.1 General Description .. 7
 5.2 General Requirements (Performance) 7
 5.3 Detailed Requirements (Performance) 8
 5.4 Welding Procedure Qualification (Procedure) 22

6. Fabrication ... 24
 6.1 Scope ... 24
 6.2 Welding Consumables .. 24
 6.3 Welding Equipment ... 27
 6.4 Weld Settings ... 27
 6.5 Preweld Cleaning and Other Preparation 27
 6.6 Preweld Joint Preparation and Fit-up 27
 6.7 Preheating and Interpass Temperature Control 28
 6.8 Tack Welds .. 28
 6.9 Weld Start and Run-Off Tabs ... 28
 6.10 Weld Shielding for GTAW, GMAW, and PAW 28
 6.11 Tungsten Electrodes ... 28
 6.12 Filler Materials .. 29
 6.13 Interpass Cleaning ... 29
 6.14 Welding and Weldments .. 29
 6.15 Postweld Cleaning ... 31
 6.16 Postweld Processing .. 31

xiii
6.17 Weld Identification Requirements .. 31
6.18 Acceptance Inspection ... 31
6.19 Rework .. 31
6.20 Repair .. 32
6.21 Record Requirements .. 32

7. Inspection .. 32
 7.1 Qualification of Inspection Personnel ... 32
 7.2 Vision Test ... 32
 7.3 Visual Weld Inspection .. 32
 7.4 Nondestructive Inspection ... 32
 7.5 Acceptance Criteria .. 33
 7.6 Inspection Records .. 37

8. Repair of Existing Structures ... 37
 8.1 Scope .. 37
 8.2 Design .. 38
 8.3 Welding Procedures .. 38
 8.4 Welder and Welding Operator Qualification ... 39
 8.5 Welding Equipment ... 39
 8.6 Weld Repair Inspection ... 39
 8.7 Grounding ... 39
 8.8 Repair Documentation .. 39

9. Nonflight Hardware ... 39
 9.1 Scope .. 39
 9.2 Exceptions and Additional Requirements ... 39

Annex B (Normative) — Effective Throat ... 59
Annex C (Normative) — Bend Testing Criteria ... 61
Annex D (Informative) — Informative References ... 69
Annex E (Informative) — Safe Practices ... 71
Annex F (Informative) — Guidelines for the Preparation of Technical Inquiries 75
Annex G (Informative) — Commentary ... 77
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Fusion Welding Processes</td>
</tr>
<tr>
<td>5.2</td>
<td>Samples of Alloys Contained in Material Groups I through VIII</td>
</tr>
<tr>
<td>5.3</td>
<td>Welding Position, Base Metal Form and Base Metal Qualified by Test Weld</td>
</tr>
<tr>
<td>5.4</td>
<td>Other Welding Conditions Qualified by Test Weld</td>
</tr>
<tr>
<td>5.5</td>
<td>POR Test Requirements</td>
</tr>
<tr>
<td>6.1</td>
<td>Gas Requirements</td>
</tr>
<tr>
<td>6.2</td>
<td>Recommended Shielding Gases for Welding</td>
</tr>
<tr>
<td>6.3</td>
<td>Preheat and Interpass Temperatures</td>
</tr>
<tr>
<td>6.4</td>
<td>Filler Metal for Welding Aluminum Alloys Using GMAW, GTAW, and PAW Processes</td>
</tr>
<tr>
<td>6.5</td>
<td>Filler Metal for Welding Titanium Alloys Using GMAW, GTAW, and PAW Processes</td>
</tr>
<tr>
<td>6.6</td>
<td>Filler Metal for Welding Stainless Steels and Heat Resistant Alloys Using GMAW, GTAW, and PAW Processes</td>
</tr>
<tr>
<td>7.1</td>
<td>Acceptance Criteria (in [mm])</td>
</tr>
<tr>
<td>9.1</td>
<td>Industrial Codes and Specifications Suggested for Welding Aerospace Nonflight Hardware</td>
</tr>
<tr>
<td>A.1</td>
<td>Equivalent Fillet Weld Leg Size for Skewed T-Joints</td>
</tr>
<tr>
<td>C.1</td>
<td>Base Metals for Which Bend Testing is Not Applicable</td>
</tr>
<tr>
<td>C.2</td>
<td>Bend Specimen Thickness and Bend Radius (in)</td>
</tr>
<tr>
<td>C.2M</td>
<td>Bend Specimen Thickness and Bend Radius (mm)</td>
</tr>
<tr>
<td>C.3</td>
<td>Bend Specimens for Groove Welds in Tube</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Suggested Test Record Form</td>
</tr>
<tr>
<td>5.2</td>
<td>Groove Weld in Sheet: Positions 1G, 2G, 3G, and 4G</td>
</tr>
<tr>
<td>5.3</td>
<td>Fillet Weld in Sheet: Position 1F, 2F, 3F, and 4F</td>
</tr>
<tr>
<td>5.4</td>
<td>Groove Weld in Tube Positions 1G, 2G, 5G, and 6G</td>
</tr>
<tr>
<td>5.5</td>
<td>Fillet Weld in Tube: Positions 1F, 2F, 4F, and 5F</td>
</tr>
<tr>
<td>5.6</td>
<td>Groove Test Weld in Sheet</td>
</tr>
<tr>
<td>5.7</td>
<td>Fillet Test Weld in Sheet</td>
</tr>
<tr>
<td>5.8</td>
<td>Groove Test Weld in Tube</td>
</tr>
<tr>
<td>5.9</td>
<td>Fillet Test Weld in Tube</td>
</tr>
<tr>
<td>5.10</td>
<td>Blank Locations for Metallographic Specimens in Fillet-Welded Sheet</td>
</tr>
<tr>
<td>5.11</td>
<td>Blank Locations for Metallographic Specimens in Fillet-Welded Tube</td>
</tr>
<tr>
<td>5.12A</td>
<td>Incomplete Fusion at Root in Fillet Welds When Thickness of Both Members is Greater Than 0.063 in [1.6 mm]</td>
</tr>
<tr>
<td>5.12B</td>
<td>Incomplete Fusion at Root in Fillet Welds When Thickness of Any Member is Less Than or Equal to 0.063 in [1.6 mm]</td>
</tr>
<tr>
<td>5.13</td>
<td>Welding Procedure Specification (WPS) Form</td>
</tr>
<tr>
<td>5.14</td>
<td>Procedure Qualification Record (POR) Form</td>
</tr>
<tr>
<td>6.1</td>
<td>Joint Preparation in Joint Members of Unequal Thickness</td>
</tr>
<tr>
<td>7.1</td>
<td>Acceptable and Unacceptable Weld Profiles</td>
</tr>
<tr>
<td>7.2</td>
<td>Mismatch Between Joint Members After Welding</td>
</tr>
<tr>
<td>A.1(a)</td>
<td>Square Groove Butt Joints</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>A.1(b)</td>
<td>Single-Bevel-Groove Weld Joints</td>
</tr>
<tr>
<td>A.1(c)</td>
<td>Single-V-Groove Weld Joints</td>
</tr>
<tr>
<td>A.1(d)</td>
<td>Single-J-Groove Weld Joints</td>
</tr>
<tr>
<td>A.1(e)</td>
<td>Single-U-Groove Weld Joints</td>
</tr>
<tr>
<td>A.1(f)</td>
<td>Double-Bevel-Groove Weld Joints</td>
</tr>
<tr>
<td>A.1(g)</td>
<td>Double-V-Groove Weld Joints</td>
</tr>
<tr>
<td>A.1(h)</td>
<td>Double-J-Groove Weld Joints</td>
</tr>
<tr>
<td>A.1(i)</td>
<td>Double-U-Groove Weld Joints</td>
</tr>
<tr>
<td>A.2</td>
<td>Two- and Three-Piece T-Weld Joints – Melt-through Welds</td>
</tr>
<tr>
<td>A.3(a)</td>
<td>Flanged Joints</td>
</tr>
<tr>
<td>A.3(b)</td>
<td>Flanged Edge Joints (Nonstandard)</td>
</tr>
<tr>
<td>A.4</td>
<td>Fillet Weld Details</td>
</tr>
<tr>
<td>B.1</td>
<td>Effective Throat</td>
</tr>
<tr>
<td>C.1</td>
<td>Bend Specimens in Groove Welded Tube</td>
</tr>
</tbody>
</table>
1. Scope and General Requirements

1.1 Scope. This specification contains requirements for fusion welding of aerospace hardware. It is to be used in conjunction with the Engineering Authority’s design handbooks or their accepted data. When conformance to this specification is stipulated in contract documents, all provisions of this specification shall be complied with, except for those provisions that the Engineering Authority or contract documents specifically exempt, or those optional provisions that shall be applied when specified by the contract documents.

The following is a summary of the specification Clauses:

Clause 1. Scope and General Requirements: basic information on the scope and provisions of this specification.
Clause 2. Normative References: a listing of the documents that are required for the application of this specification.
Clause 3. Terms and Definitions: a list of technical terms and definitions of particular importance to this specification.
Clause 4. Design of Welded Connections: requirements and guidance information for the design of welded connections.
Clause 5. Welding Performance and Procedure Qualification: qualification requirements for welders, welding operators and welding procedures.
Clause 6. Fabrication: requirements for preparation, assembly and workmanship when welding aerospace hardware.
Clause 7. Inspection: criteria for inspector qualification, responsibilities of inspectors, acceptance of production welds, and standard requirements for performing visual inspection and nondestructive examination (NDE).
Clause 8. Repair of Existing Structures: requirements for repair of existing aerospace hardware.
Clause 9. Welding of Nonflight Hardware: requirements for welding nonflight hardware.

1.1.1 Flight Hardware. The fundamental premise of this specification is to provide general requirements for currently recognized aerospace fusion welding processes and materials. However, this specification provides for the application of new materials, new welding processes, or acceptance criteria for production welds differing from those defined in this specification. These new applications shall be documented by the proposer and approved by the Engineering Authority.

1.1.1.1 Aircraft, Rotorcraft, and Engines Subject to FAA Regulation. When applying welding in the design, construction and repair of aircraft, rotorcraft or engines subject to FAA regulation, the Engineering Authority must perform the appropriate design analyses and impose process control measures that will ensure compliance with the applicable requirements of the Code of Federal Regulations, Title 14.

1.1.2 Nonflight Hardware. Nonflight hardware, tooling, ground support equipment and related nonconventional aerospace facilities shall be designed and welded in accordance with the requirements of Clause 9.

1.2 Classification. All welds produced in accordance with this specification shall be classified on the engineering drawings. Weld classifications shall be as follows: Class A, Class B, or Class C. These classifications refer to the level of inspection required and to the acceptance criteria. Alternate acceptance criteria and inspection methods may be applied if specified on the engineering drawing. The Engineering Authority shall also determine the weld procedure qualification requirements (see Annex G—Commentary).