Abstract

This code covers the welding requirements for any type of welded structure made from the commonly used carbon and low-alloy constructional steels. Clauses 1 through 11 constitute a body of rules for the regulation of welding in steel construction. There are eight normative and eleven informative annexes in this code. A Commentary of the code is included with the document.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex T). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D1 Committee on Structural Welding. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D1 Committee on Structural Welding and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D1 Committee on Structural Welding to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
This page is intentionally blank.
Personnel

AWS D1 Committee on Structural Welding

A. W. Sindel, Chair  TRC Solutions  
T. L. Niemann, Vice Chair  Fickett Structural Solutions, LLC  
R. D. Medlock, 2nd Vice Chair  High Steel Structures, LLC  
J. A. Molin, Secretary  American Welding Society  
U. W. Aschemeier  Subsea Global Solutions  
E. L. Bickford  IISI  
T. M. Burns  Thom Burns Consulting, LLC  
H. H. Campbell, III  Pazuzu Engineering  
R. D. Campbell  Bechtel  
B. Connelly  Eustis Engineering, LLC  
R. B. Corbit  APTIM (Retired)  
M. E. Gase  Midwest Steel, Incorporated  
M. A. Grieco  MA Department of Transportation  
J. J. Kenney  Shell International E&P  
J. H. Kiefer  ConocoPhillips (Retired)  
J. R. Kissell  Trinity Consultants  
B. Krueger  Los Alamos National Laboratory  
V. Kuruvilla  Lexicon, Incorporated  
J. Lawmon  American Engineering and Manufacturing, Incorporated  
N. S. Lindell  Project & Quality Solutions  
D. R. Luciani  Canadian Welding Bureau  
P. W. Marshall  Moonshine Hill Proprietary Systems Engineering  
M. J. Mayes  Terracon Consultants  
D. L. McQuaid  D. L. McQuaid & Associates, Incorporated  
J. Merrill  TRC Solutions  
D. K. Miller  The Lincoln Electric Company  
J. B. Pearson, Jr.  ALRV Consultant, LLC  
D. D. Rager  Rager Consulting, Incorporated  
T. J. Schlaflly  American Institute of Steel Construction  
R. E. Shaw, Jr.  Steel Structures Technology Center, Incorporated  
M. M. Tayarani  Pennoni Associates, Incorporated  
P. Torchio, III  Williams Enterprises of GA, Incorporated (Retired)

Advisors to the D1 Committee on Structural Welding

N. J. Altebrando  STV Incorporated  
F. G. Armao  The Lincoln Electric Company  
G. L. Fox  Consultant  
H. E. Gilmer  HRV Conformance Verification Associates, Incorporated  
G. J. Hill  G.J. Hill & Associates  
M. L. Hoitomt  Consultant  
C. W. Holmes  Modjeski & Masters, Inc. (Retired)  
G. S. Martin  Retired
Advisors to the D1 Committee on Structural Welding (Continued)

D. C. Phillips  Retired
P. G. Kinney  Sandia National Laboratories
J. W. Post  J. W. Post & Associates, Incorporated
R. W. Stieve  Parsons Corporation
K. K. Verma  Consultant

Active Past AWS D1 Main Committee Chairs

D. L. McQuaid  D.L. McQuaid & Assoc. Incorporated
D. K. Miller  The Lincoln Electric Company
D. D. Rager  Rager Consulting, Incorporated

AWS D1Q Subcommittee on Steel

T. J. Schlafly, Chair  American Institute of Steel Construction
P. Torchio, III, Vice Chair  Williams Enterprises of GA, Incorporated (Retired)
J. A. Molin, Secretary  American Welding Society
U. W. Aschemeier  Subsea Global Solutions
M. Bernasek  C-Spec
E. L. Bickford  IISI
H. H. Campbell, III  Pazuzu Engineering
R. V. Clarke  Retired
M. E. Gase  Midwest Steel, Incorporated
H. E. Gilmer  HRV Conformance Verification Associates, Incorporated
W. S. Houston  Stanley Black & Decker–Nelson Stud Welding
J. J. Kenney  Shell International E&P
J. H. Kiefer  Conoco Philips (Retired)
P. G. Kinney  Sandia National Laboratories
L. Kloiber  LeJeune Steel Company
V. Kuruvilla  Lexicon, Incorporated
D. R. Luciani  Canadian Welding Bureau
P. W. Marshall  Moonshine Hill Proprietary Systems Engineering
R. P. Marslender  Kiewit Offshore Services, LTD.
G. S. Martin  Retired
M. J. Mayes  Terracon Consultants
J. Merrill  TRC Solutions
J. I. Miller  Chevron
S. P. Moran  American Hydro Corporation
T. C. Myers  ExxonMobil
J. C. Nordby  Entergy
D. D. Rager  Rager Consulting, Incorporated
R. E. Shaw, Jr.  Steel Structures Technology Center, Incorporated
A. W. Sindel  TRC Solutions
J. L. Warren  McDermott

Advisors to the D1Q Committee on Steel

N. J. Altebrando  STV Incorporated
B. M. Butler  Walt Disney World Company
J. W. Cagle  Schuff Steel
B. Capers  Walt Disney World Company
H. A. Chambers  SNH Market Consultants
M. A. Grieco  MA Department of Transportation
Advisors to the D1Q Committee on Steel (Continued)

J. Guili  
Tru-Weld Equipment Company
C. W. Hayes  
The Lincoln Electric Company
R. L. Holdren  
Arc Specialties
C. W. Holmes  
Modjeski & Masters, Inc. (Retired)
M. J. Jordan  
Johnson Plate and Tower Fabrication
J. E. Koski  
Stud Welding Products Incorporated
N. S. Lindell  
Project & Quality Systems
D. L. McQuaid  
D. L. McQuaid & Associates, Incorporated
R. D. Medlock  
High Steel Structures
D. K. Miller  
The Lincoln Electric Company
J. A. Packer  
University of Toronto
J. B. Pearson, Jr.  
ALRY Consultant, LLC
D. C. Phillips  
Retired
J. W. Post  
J. W. Post & Associates, Incorporated
R. W. Stieve  
Parsons Corporation
M. M. Tayarani  
MA Department of Transportation
S. J. Thomas  
Consultant
K. K. Verma  
Consultant
P. Workman  
Tru-Weld
D. A. Wright  
Wright Welding Technologies

D1Q Subcommittee Task Group on Design

T. J. Schlafly, Co-Chair  
American Institute of Steel Construction
D. K. Miller, Co-Chair  
The Lincoln Electric Company
T. Green, Vice Chair  
Wiss, Janney, Elstner Associates
D. B. Ferrell  
Ferrell Engineering, Incorporated
M. J. Jordan  
Johnson Plate and Tower Fabrication
J. J. Kenney  
Shell International E & P
L. A. Kloiber  
LeJeune Steel Company
P. W. Marshall  
Moonshine Hill Proprietary Systems Engineering
J. M. Ocel  
Federal Highway Administration
J. A. Packer  
University of Toronto
J. B. Pearson, Jr.  
ALRY Consultant, LLC
R. E. Shaw, Jr.  
Steel Structures Technology Center, Incorporated
R. H. R. Tide  
Wiss, Janney, Elstner Associates

Advisors to the D1Q Subcommittee Task Group on Design

B. Capers  
Walt Disney World Company
J. Desjardins  
Bombardier Transportation

D1Q Subcommittee Task Group on Prequalification

C. Zanfir, Chair  
Canadian Welding Bureau
L. M. Bower, Vice Chair  
NCI Building Systems
W. J. Bell  
Atlantic Testing Laboratories
H. H. Campbell, III  
Pazuzu Engineering
M. D. Florczykowski  
Precision Custom Components
D. R. Luciani  
Canadian Welding Bureau
P. W. Marshall  
MHP Systems Engineering
D. K. Miller  
The Lincoln Electric Company
J. I. Miller  
Chevron
D1Q Subcommittee Task Group on Prequalification (Continued)

S. P. Moran  American Hydro Corporation
J. C. Norby  Entergy
R. E. Shaw, Jr.  Steel Structures Technology Center, Incorporated
A.W. Sindel  TRC Solutions
P. Torchio, III  Williams Enterprises of Georgia, Incorporated (Retired)

D1Q Subcommittee Task Group on Qualification

T. C. Myers, Chair  ExxonMobil
S. J. Findlan, Vice Chair  CB&I Power
M. Bernasek  C-Spec
E. L. Bickford  IISI
T. R. Blissett  Accurate Weldment Testing, LLC
M. J. Harker  Idaho National Laboratory
R. L. Holdren  Arc Specialties
J. J. Kenney  Shell International E & P
J. H. Kiefer  ConocoPhillips Company (Retired)
R. P. Marslender  Kiewit Offshore Services, Ltd.
J. R. McGranaghan  Arcosa Meyers Utility Structures
D. W. Meyer  ESAB Welding & Cutting Products
J. D. Niemann  Kawasaki Motors Manufacturing Corporation USA
D. D. Rager  Rager Consulting, Incorporated
A. W. Sindel  TRC Solutions
D. A. Stickel  Caterpillar, Incorporated
B. M. Toth  CB&I
K. K. Welch  Miller Electric Manufacturing Company

Advisors to the D1Q Subcommittee Task Group on Qualification

G. S. Martin  Retired
D. C. Phillips  Retired
K. K. Verma  Consultant

D1Q Subcommittee Task Group on Fabrication

J. I. Miller, Chair  Chevron
M. E. Gase, Vice Chair  Midwest Steel, Incorporated
S. E. Anderson  Anderson Inspections
L. N. Bower  NCI Building Systems
H. H. Campbell, III  Pazuzu Engineering
R. V. Clarke  Retired
H. E. Gilmer  HRV Conformance Verification Associates, Incorporated
M. A. Grieco  Massachusetts Department of Transportation
C. Carbonneau  Tishman AECOM
J. H. Kiefer  ConocoPhillips Company (Retired)
P. G. Kinney  Sandia National Laboratories
V. Kuruvilla  Lexicon, Incorporated
G. S. Martin  Retired
E. S. Mattfield  New York City Department of Buildings
R. D. Medlock  High Steel Structures, LLC
J. E. Mellinger  Pennoni Associates, Incorporated
R. L. Mertz  Alta Vista Solutions
R. E. Monson  Pennoni
Advisors to the D1Q Subcommittee Task Group on Fabrication

W. G. Alexander  
B. Anderson  
J. W. Cagle  
G. L. Fox  
G. J. Hill  
R. L. Holdren  
C. W. Holmes  
D. L. McQuaid  
J. E. Myers  
J. W. Post  
T. J. Schlafly  
J. F. Sokolewicz  
K. K. Verma

WGAPE  
Molex Incorporated  
C. P. Buckner Steel Erection, Incorporated  
Consultant  
G. J. Hill & Associates  
ARC Specialties  
Modjeski & Masters, Incorporated (Retired)  
D. L. McQuaid & Associates, Incorporated  
Consultant  
J. W. Post and Associates, Incorporated  
American Institute of Steel Construction  
Trinity Industries, Incorporated  
Consultant

D1Q Subcommittee Task Group on Inspection

P. G. Kinney, Chair  
J. J. Kinsey, Vice Chair  
M. E. Gase, 2 Vice Chair  
S. E. Anderson  
U. W. Aschemeier  
R. V. Clarke  
J. A. Cochran  
J. M. Davis  
P. A. Furr  
H. E. Gilmer  
C. W. Hayes  
P. T. Hayes  
J. K. Hilton  
N. S. Lindell  
G. S. Martin  
E. S. Mattfield  
J. E. Mellinger  
J. Merrill  
R. L. Mertz  
R. E. Monson  
J. B. Pearson, Jr.  
C. E. Pennington  
R. E. Stachel  
K. J. Steinhaugen

Sandia National Laboratories  
Caltrop Corporation  
Midwest Steel, Incorporated  
Anderson Inspections  
Subsea Global Solutions  
Retired  
Kiewit Corporation  
NDE-Olympus NDT-University Ultrasonics  
Consultant  
HRV Conformance Verification Associates, Incorporated  
The Lincoln Electric Company  
GE Inspection Technologies, LP  
KTA-Tator, Incorporated  
Product of Quality Solutions  
Retired  
New York City Department of Buildings  
Pennoni Associates, Incorporated  
TRC Solutions  
Alta Vista Solutions  
Pennoni Associates, Incorporated  
ALRV Consultant, LLC  
Nova  
HRV Conformance Verification Associates, Incorporated  
Consultant

Advisors to the D1Q Subcommittee Task Group on Inspection

D. A. Dunn  
J. J. Edwards  
G. J. Hill  
R. K. Holbert  
J. H. Kiefer  
C. A. Mankenberg  
D. L. McQuaid  
D. G. Yantz

PSI (Retired)  
DOT Quality Services  
G. J. Hill & Associates  
Alstom Power  
ConocoPhillips Company (Retired)  
Shell International Exploration & Production  
D. L. McQuaid & Associates, Incorporated  
Canadian Welding Bureau


**D1Q Subcommittee Task Group on Stud Welding**

W. S. Houston, Chair  
U. W. Aschemeyer, Vice Chair  
R. D. Campbell  
A. D. D’Amico  
B. C. Hobson  
I. W. Houston  
J. E. Koski  
D. R. Lucianti  
C. W. Makar  
S. P. Moran  
P. Torchio, III  
J. S. Wirtz  
P. Workman  

Stanley Black & Decker–Nelson Stud Welding  
Subsea Global Solutions  
Bechtel  
Consultant  
Image Industries  
Stanley Black & Decker–Nelson Stud Welding  
Stud Welding Products, Incorporated  
Canadian Welding Bureau  
Cox Industries  
American Hydro Corporation  
Williams Enterprises of Georgia, Incorporated (Retired)  
Stone & Webster, Incorporated  
Tru-Weld Equipment Company

**Advisors to the D1Q Subcommittee Task Group on Stud Welding**

C. B. Champney  
J. Guili  
R. Schraff  
M. M. Tayarani  

Stanley Black & Decker–Nelson Stud Welding  
Tru-Weld Equipment Company  
Stanley Black & Decker–Nelson Stud Welding  
Pennoni Associates, Incorporated

**D1Q Standing Task Group on Tubulars**

J. J. Kenney, Chair  
M. A. Grieco, Vice Chair  
E. L. Bickford  
N. M. Choy  
R. V. Clarke  
D. B. Ferrell  
R. B. Fletcher  
P. A. Huckabee  
L. A. Kloiber  
C. Long  
P. W. Marshall  
R. P. Marslender  
J. P. McCormick  
R. L. Mertz  
R. E. Monson  
K. T. Olson  
J. A. Packer  
R. Sougata  
R. Sause  

Shell International E & P  
Massachusetts Department of Transportation  
IISI  
California Department of Transportation  
Retired  
Ferrell Engineering, Incorporated  
Atlas Tube  
Gill Engineering Associates, Incorporated  
LeJeune Steel Consultant  
Consultant  
Moonshine Hill Proprietary Systems Engineering  
Kiewit Offshore Services, Ltd.  
University of Michigan  
Alta Vista Solutions  
Pennoni Associates, Incorporated  
FORSE Consulting-Steel Tube Institute  
University of Toronto  
Sougata Roy, LLC  
ATLSS Center Lehigh University

**Advisors to the D1Q Standing Task Group on Tubulars**

J. J. Edwards  
V. Kuruvilla  
M. J. Mayes  
R. D. Medlock  
T. L. Niemann  
D. D. Rager  
T. J. Schlafly  
A. W. Sindel  

DOT Quality Services  
Lexicon, Incorporated  
Terracon Consultants  
High Steel Structures, LLC  
Fickett Structural Solutions, LLC  
Rager Consulting, Incorporated  
American Institute of Steel Construction  
TRC Solutions
D1M Standing Task Group on New Materials

M. D. Kerr, Chair  McDermott
T. J. Schlafly, Vice Chair  American Institute of Steel Construction
R. S. Caroti  Arcelor Mittal
C. Haven  Hobart Brothers Company
D. A. Koch  Washington State University
V. Kuruvilla  Lexicon, Incorporated
R. D. Medlock  High Steel Structures, LLC
D. W. Meyer  ESAB Welding & Cutting Products
T. M. Nelson  LTK Engineering Services
P. R. Niewiarowski  Sargent & Lundy, LLC
D. D. Rager  Rager Consulting, Incorporated
J. L. Schoen  Nucor-Yamato Steel
J. L. Warren  McDermott

Advisors to the D1M Standing Task Group on New Materials

B. Capers  Walt Disney World Company
S. C. Finnigan  Arcelor Mittal
C. W. Hayes  The Lincoln Electric Company
M. L. Hoitomt  Consultant
J. B. Pearson, Jr.  ALRV Consultant, LLC
D. C. Phillips  Retired
J. W. Post  J. W. Post & Associates, Incorporated
D. Rees-Evans  Steel Dynamics
A. W. Sindel  TRC Solutions
Foreword

This foreword is not part of AWS D1.1/D1.1M:2020, Structural Welding Code—Steel, but is included for informational purposes only.


In 1988, AWS published its first edition of AASHTO/AWS D1.5, Bridge Welding Code; coincident with this, the D1.1 code changed references of buildings and bridges to statically loaded and dynamically loaded structures, respectively, in order to make the document applicable to a broader range of structural applications. After the publishing of the 2010 edition, it was decided that the AWS Structural Welding Code—Steel would be published on a five year revision cycle instead of a two year revision cycle. This was done in order to sync the publication cycle of AWS Structural Welding Code—Steel with the publication cycles of the AISC Steel Building Specification and the International Building Code. This 2020 edition is the 24th edition of D1.1.

Changes in Code Requirements, underlined text in the clauses, subclauses, tables, figures, or forms indicates a change from the 2015 edition. A vertical line in the margin of a table or figure also indicates a change from the 2015 edition.

The following is a summary of the most significant technical changes contained in D1.1/D1.1M:2020:

### Summary of Changes

<table>
<thead>
<tr>
<th>Clause/Table/Figure/Annex</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause 1</td>
<td>This is a new clause listing normative references. It replaces subclause 1.9 and Annex S from the previous edition.</td>
</tr>
<tr>
<td>Clause 2</td>
<td>This is a new clause that provides terms and definitions specific to this standard. It replaces subclause 1.3 and Annex J from the previous edition.</td>
</tr>
<tr>
<td>Clause 3</td>
<td>Clause 4 was presented as Clause 2 in the previous edition. Annex A Figures in the previous edition were incorporated into Clause 4.</td>
</tr>
<tr>
<td>Clause 5</td>
<td>Clause 5 was presented as Clause 3 in the previous edition. The Clause has also been restructured to follow the normal progression of writing a prequalified WPS. Table 5.2 has been editorially renamed and reorganized to list WPS essential variables. Additional requirements have been added when using shielding gases and a new Table 5.7 was added on shielding gases. New materials have been added to Tables 5.3 and 5.8.</td>
</tr>
<tr>
<td>Clause 6</td>
<td>Clause 6 was presented as Clause 4 in the previous edition. Revisions include the requirements for the qualification of WPSs using waveform technology. All the CVN testing requirements have been added to Table 6.7, so they now are all contained in a single place. The WPS retest requirements have been clarified. The PJP Groove weld clause has been reorganized to clarify the qualification of PJP Groove welds using the Joint Details in Figure 5.2. Part D of the Clause has been reorganized to better align the testing procedures and qualification of CVNs with the order that they would be accomplished.</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Clause/Table/Figure/Annex</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause 7</td>
<td>Clause 7 was presented as Clause 5 in the previous edition. Revisions were made to the weld restoration of base metal with mislocated holes.</td>
</tr>
<tr>
<td>Clause 8</td>
<td>Clause 8 was presented as Clause 6 in the previous edition. Revisions were made to the qualification requirements for inspection personnel to ensure that all welding inspectors are qualified. The Engineer’s responsibilities as it relates to Inspection were also clarified. Digital radiography has been added to Radiographic Testing. The limitations for geometric unsharpness have been added to the Code and the equation has been revised to match the equation in ASME Boiler and Pressure Vessel Code, Section V, Article 2. The methodology to determine the attenuation factor has been updated to reflect that UT instruments are now capable of reporting a fractional value for dB.</td>
</tr>
<tr>
<td>Clause 9</td>
<td>Clause 9 was presented as Clause 7 in the previous edition. The code was updated to require the manufacturer’s permanent identification on headed studs and deformed anchor bars. Revisions were made to provide weld procedure requirements for fillet welding of studs.</td>
</tr>
<tr>
<td>Clause 10</td>
<td>Clause 10 was presented as Clause 9 in the previous edition. The calculations for static strength of welded tubular connections were removed in deference to AISC design provisions.</td>
</tr>
<tr>
<td>Clause 11</td>
<td>Clause 11 was presented as Clause 8 in the previous edition.</td>
</tr>
<tr>
<td>Annex A</td>
<td>Annex A was presented as Annex B in the previous edition.</td>
</tr>
<tr>
<td>Annex B</td>
<td>Annex B was presented as Annex H in the previous edition.</td>
</tr>
<tr>
<td>Annex D</td>
<td>Annex D was presented as Annex F in the previous edition.</td>
</tr>
<tr>
<td>Annex E</td>
<td>Annex E was presented as Annex D in the previous edition.</td>
</tr>
<tr>
<td>Annex F</td>
<td>Annex F was presented as Annex E in the previous edition.</td>
</tr>
<tr>
<td>Annex H</td>
<td>New Annex that addresses phased array ultrasonic testing (PAUT)</td>
</tr>
<tr>
<td>Annex J</td>
<td>Annex J was presented as Annex M in the previous edition.</td>
</tr>
<tr>
<td>Annex K</td>
<td>Annex K was presented as Annex P in the previous edition.</td>
</tr>
<tr>
<td>Annex L</td>
<td>Annex L was presented as Annex T in the previous edition.</td>
</tr>
<tr>
<td>Annex M</td>
<td>Annex M was presented as Annex U in the previous edition.</td>
</tr>
<tr>
<td>Annex N</td>
<td>Annex N was presented as Annex K in the previous edition.</td>
</tr>
<tr>
<td>Annex O</td>
<td>Annex O was presented as Annex Q in the previous edition.</td>
</tr>
<tr>
<td>Annex P</td>
<td>Annex P was presented as Annex L in the previous edition.</td>
</tr>
<tr>
<td>Annex Q</td>
<td>Annex Q was presented as Annex O in the previous edition.</td>
</tr>
<tr>
<td>Annex R</td>
<td>Annex R has been modified to contain preliminary design of circular tube connections previously contained in the Tubular Structures clause as well as ovalizing parameter alpha.</td>
</tr>
<tr>
<td>Annex T</td>
<td>Annex T was presented as Annex N in the previous edition.</td>
</tr>
<tr>
<td>C-Annex H</td>
<td>Commentary was added for Annex H</td>
</tr>
</tbody>
</table>

**Commentary.** The Commentary is nonmandatory and is intended only to provide insightful information into provision rationale.

**Normative Annexes.** These annexes address specific subjects in the code and their requirements are mandatory requirements that supplement the code provisions.

**Informative Annexes.** These annexes are not code requirements but are provided to clarify code provisions by showing examples, providing information, or suggesting alternative good practices.

**Index.** As in previous codes, the entries in the Index are referred to by subclause number rather than by page number. This should enable the user of the Index to locate a particular item of interest in minimum time.
Errata. It is the Structural Welding Committee’s Policy that all errata should be made available to users of the code. Therefore, any significant errata will be published in the Society News Section of the Welding Journal and posted on the AWS web site at: http://www.aws.org/standards/page/errata.

Suggestions. Your comments for improving AWS D1.1/D1.1M:2015, Structural Welding Code—Steel are welcome. Submit comments to the Secretary of the D1Q Subcommittee, American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Errata

The following Errata have been identified and are incorporated in this reprint.

Page 9, term *dihedral angle*: a return is missing between “See local dihedral angle” and “discontinuity”

*dihedral angle*. See local dihedral angle.

*discontinuity*. An interruption of the typical structure of a material, such as a lack of homogeneity in its mechanical or metallurgical, or physical characteristics. A discontinuity is not necessarily a defect.

Page 11, the symbol should be $\phi$ not $\theta$.

*groove angle, $\phi$ (tubular structures). The angle between opposing faces of the groove to be filled with weld metals, determined after the joint is fit-up.*

Page 11, the term *interpass temperature* is missing the asterisk.

*interpass temperature*. In a multipass weld, the temperature of the weld area between weld passes.

Page 12, the symbol should be $\Psi$ not $\theta$.

*local dihedral angle, $\Psi$ (tubular structures). The angle, measured in a plane perpendicular to the line of the weld, between tangents to the outside surfaces of the tubes being joined at the weld. The exterior dihedral angle, where one looks at a localized section of the connection, such that the intersecting surfaces may be treated as planes.*

Page 13, the term *preheat temperature, welding* is missing the asterisk.

*preheat temperature, welding*. The temperature of the base metal in the volume surrounding the point of welding immediately before welding is started. In a multiple-pass weld, it is also the temperature immediately before the second and subsequent passes are started.

Page 14, top of page *single electrode, *parallel electrode, * multiple electrode moved to below the definition of SAW.

*Submerged arc welding (SAW).* An arc welding process that uses an arc or arcs between a bare metal electrode or electrodes and the weld pool. The arc and molten metal are shielded by a blanket of granular flux on the workpieces. The process is used without pressure and with filler metal from the electrode and sometimes from a supplemental source (welding rod, flux, or metal granules).

*single electrode*. One electrode connected exclusively to one power source which may consist of one or more power units.

*parallel electrode*. Two electrodes connected electrically in parallel and exclusively to the same power source. Both electrodes are usually fed by means of a single electrode feeder. Welding current, when specified, is the total for the two.

*multiple electrodes*. The combination of two or more single or parallel electrode systems. Each of the component systems has its own independent

Page 42, Table 4.5 entitled “Fatigue Stress Design Parameters (see 4.14.1)”

-Description 5.6 replace “Formula 4” with “Formula 5”
-Description 5.7 replace “Formula 4” with “Formula 5”
-Description 8.2 replace “Formula 3” with “Formula 4”
-Description 8.4 replace “Formula 3” with “Formula 4”

Page 63, Clause 5.4.1

-Replace the reference “5.4.1.1” with “5.4.1.1 through 5.4.1.9.”

Page 69, Table 5.2 entitled “Essential Variables for Prequalified WPSs (see 5.2.1)”

-item (4) Base Metal Preheat Category(s) replace “(See Table 5.4)” with “(See Table 5.8)”.