Abstract

This code covers the welding requirements for any type of welded structure made from the commonly used carbon and low-alloy constructional steels. Clauses 1 through 11 constitute a body of rules for the regulation of welding in steel construction. There are eight normative and eleven informative annexes in this code. A Commentary of the code is included with the document.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata, or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Director, Standards Development, 8669 NW 36 St, # 130, Miami, FL 33166 (see Annex T). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D1 Committee on Structural Welding. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D1 Committee on Structural Welding and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D1 Committee on Structural Welding to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Foreword

This foreword is not part of AWS D1.1/D1.1M:2020, Structural Welding Code—Steel, but is included for informational purposes only.

In 1988, AWS published its first edition of AASHTO/AWS D1.5, Bridge Welding Code; coincident with this, the D1.1 code changed references of buildings and bridges to statically loaded and dynamically loaded structures, respectively, in order to make the document applicable to a broader range of structural applications. After the publishing of the 2010 edition, it was decided that the AWS Structural Welding Code—Steel would be published on a five year revision cycle instead of a two year revision cycle. This was done in order to sync the publication cycle of AWS Structural Welding Code-Steel with the publication cycles of the AISC Steel Building Specification and the International Building Code. This 2020 edition is the 24th edition of D1.1.

Changes in Code Requirements, underlined text in the clauses, subclauses, tables, figures, or forms indicates a change from the 2015 edition. A vertical line in the margin of a table or figure also indicates a change from the 2015 edition.

The following is a summary of the most significant technical changes contained in D1.1/D1.1M:2020:

<table>
<thead>
<tr>
<th>Clause/Table/Figure/Annex</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause 1</td>
<td>This is a new clause listing normative references. It replaces subclause 1.9 and Annex S from the previous edition.</td>
</tr>
<tr>
<td>Clause 2</td>
<td>This is a new clause that provides terms and definitions specific to this standard. It replaces subclause 1.3 and Annex J from the previous edition.</td>
</tr>
<tr>
<td>Clause 3</td>
<td>Clause 4 was presented as Clause 2 in the previous edition. Annex A Figures in the previous edition were incorporated into Clause 4.</td>
</tr>
<tr>
<td>Clause 5</td>
<td>Clause 5 was presented as Clause 3 in the previous edition. The Clause has also been restructured to follow the normal progression of writing a prequalified WPS. Table 5.2 has been editorially renamed and reorganized to list WPS essential variables. Additional requirements have been added when using shielding gases and a new Table 5.7 was added on shielding gases. New materials have been added to Tables 5.3 and 5.8.</td>
</tr>
<tr>
<td>Clause 6</td>
<td>Clause 6 was presented as Clause 4 in the previous edition. Revisions include the requirements for the qualification of WPSs using waveform technology. All the CVN testing requirements have been added to Table 6.7, so they now are all contained in a single place. The WPS retest requirements have been clarified. The PJP Groove weld clause has been reorganized to clarify the qualification of PJP Groove welds using the Joint Details in Figure 5.2. Part D of the Clause has been reorganized to better align the testing procedures and qualification of CVNs with the order that they would be accomplished.</td>
</tr>
</tbody>
</table>

(Continued)
Summary of Changes (Continued)

<table>
<thead>
<tr>
<th>Clause/Table/Figure/Annex</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause 7</td>
<td>Clause 7 was presented as Clause 5 in the previous edition. Revisions were made to the weld restoration of base metal with mislocated holes.</td>
</tr>
<tr>
<td>Clause 8</td>
<td>Clause 8 was presented as Clause 6 in the previous edition. Revisions were made to the qualification requirements for inspection personnel to ensure that all welding inspectors are qualified. The Engineer’s responsibilities as it relates to Inspection were also clarified. Digital radiography has been added to Radiographic Testing. The limitations for geometric unsharpness have been added to the Code and the equation has been revised to match the equation in ASME Boiler and Pressure Vessel Code, Section V, Article 2. The methodology to determine the attenuation factor has been updated to reflect that UT instruments are now capable of reporting a fractional value for dBi.</td>
</tr>
<tr>
<td>Clause 9</td>
<td>Clause 9 was presented as Clause 7 in the previous edition. The code was updated to require the manufacturer’s permanent identification on headed studs and deformed anchor bars. Revisions were made to provide weld procedure requirements for fillet welding of studs.</td>
</tr>
<tr>
<td>Clause 10</td>
<td>Clause 10 was presented as Clause 9 in the previous edition. The calculations for static strength of welded tubular connections were removed in deference to AISC design provisions.</td>
</tr>
<tr>
<td>Annex A</td>
<td>Annex A was presented as Annex B in the previous edition.</td>
</tr>
<tr>
<td>Annex B</td>
<td>Annex B was presented as Annex H in the previous edition.</td>
</tr>
<tr>
<td>Annex D</td>
<td>Annex D was presented as Annex F in the previous edition.</td>
</tr>
<tr>
<td>Annex E</td>
<td>Annex E was presented as Annex D in the previous edition.</td>
</tr>
<tr>
<td>Annex F</td>
<td>Annex F was presented as Annex E in the previous edition.</td>
</tr>
<tr>
<td>Annex H</td>
<td>New Annex that addresses phased array ultrasonic testing (PAUT)</td>
</tr>
<tr>
<td>Annex J</td>
<td>Annex J was presented as Annex M in the previous edition.</td>
</tr>
<tr>
<td>Annex K</td>
<td>Annex K was presented as Annex P in the previous edition.</td>
</tr>
<tr>
<td>Annex L</td>
<td>Annex L was presented as Annex T in the previous edition.</td>
</tr>
<tr>
<td>Annex M</td>
<td>Annex M was presented as Annex U in the previous edition.</td>
</tr>
<tr>
<td>Annex N</td>
<td>Annex N was presented as Annex K in the previous edition.</td>
</tr>
<tr>
<td>Annex O</td>
<td>Annex O was presented as Annex Q in the previous edition.</td>
</tr>
<tr>
<td>Annex P</td>
<td>Annex P was presented as Annex L in the previous edition.</td>
</tr>
<tr>
<td>Annex Q</td>
<td>Annex Q was presented as Annex O in the previous edition.</td>
</tr>
<tr>
<td>Annex R</td>
<td>Annex R has been modified to contain preliminary design of circular tube connections previously contained in the Tubular Structures clause as well as ovalizing parameter alpha.</td>
</tr>
<tr>
<td>Annex T</td>
<td>Annex T was presented as Annex N in the previous edition.</td>
</tr>
<tr>
<td>C-Annex H</td>
<td>Commentary was added for Annex H</td>
</tr>
</tbody>
</table>

Commentary. The Commentary is nonmandatory and is intended only to provide insightful information into provision rationale.

Normative Annexes. These annexes address specific subjects in the code and their requirements are mandatory requirements that supplement the code provisions.

Informative Annexes. These annexes are not code requirements but are provided to clarify code provisions by showing examples, providing information, or suggesting alternative good practices.

Index. As in previous codes, the entries in the Index are referred to by subclause number rather than by page number. This should enable the user of the Index to locate a particular item of interest in minimum time.
Errata. It is the Structural Welding Committee’s Policy that all errata should be made available to users of the code. Therefore, any significant errata will be published in the Society News Section of the Welding Journal and posted on the AWS web site at: http://www.aws.org/standards/page/errata.

Suggestions. Your comments for improving AWS D1.1/D1.1M:2015, Structural Welding Code—Steel are welcome. Submit comments to the Secretary of the D1Q Subcommittee, American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.
Table of Contents

Personnel ... v
Foreword .. xiii
List of Tables ... xxii
List of Figures ... xxiv

1. **General Requirements** ... 1
 1.1 Scope .. 1
 1.2 Standard Units of Measurement 1
 1.3 Safety Precautions ... 2
 1.4 Limitations .. 2
 1.5 Responsibilities .. 3
 1.6 Approval .. 3
 1.7 Mandatory and Nonmandatory Provisions 3
 1.8 Welding Symbols ... 3

2. **Normative References** ... 4

3. **Terms and Definitions** .. 7

4. **Design of Welded Connections** 17
 4.1 Scope .. 17

 Part A—Common Requirements for Design of Welded Connections (Nontubular and Tubular Members) 17
 4.2 General .. 17
 4.3 Contract Plans and Specifications 17
 4.4 Effective Areas .. 18

 Part B—Specific Requirements for Design of Nontubular Connections (Statically or Cyclically Loaded) 21
 4.5 General .. 21
 4.6 Stresses ... 21
 4.7 Joint Configuration and Details 23
 4.8 Joint Configuration and Details—Groove Welds 23
 4.9 Joint Configuration and Details—Fillet Welded Joints 24
 4.10 Joint Configuration and Details—Plug and Slot Welds 25
 4.11 Filler Plates ... 25
 4.12 Built-Up Members ... 25

 Part C—Specific Requirements for Design of Nontubular Connections (Cyclically Loaded) .. 26
 4.13 General .. 26
 4.14 Limitations .. 26
 4.15 Calculation of Stresses .. 26
 4.16 Allowable Stresses and Stress Ranges 26
 4.17 Detailing, Fabrication, and Erection 28
 4.18 Prohibited Joints and Welds 29
 4.19 Inspection ... 30

5. **Prequalification of WPSs** 62
 5.1 Scope .. 62

 Part A—WPS Development 62
 5.2 General WPS Requirements 62
<table>
<thead>
<tr>
<th>Part</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part B—Base Metal</td>
<td>5.3 Base Metal</td>
<td>63</td>
</tr>
<tr>
<td>Part C—Weld Joints</td>
<td>5.4 Weld Joints</td>
<td>63</td>
</tr>
<tr>
<td>Part D—Welding Processes</td>
<td>5.5 Welding Processes</td>
<td>65</td>
</tr>
<tr>
<td>Part E—Filler Metals and Shielding Gases</td>
<td>5.6 Filler Metal and Shielding Gas</td>
<td>65</td>
</tr>
<tr>
<td>Part F—Preheat and Interpass Temperature Requirements</td>
<td>5.7 Preheat and Interpass Temperature Requirements</td>
<td>66</td>
</tr>
<tr>
<td>Part G—WPS Requirements</td>
<td>5.8 WPS requirements</td>
<td>67</td>
</tr>
<tr>
<td>Part H—Postweld Heat Treatment</td>
<td>5.9 Postweld Heat Treatment</td>
<td>67</td>
</tr>
<tr>
<td>6. Qualification</td>
<td>6.1 Scope</td>
<td>124</td>
</tr>
<tr>
<td>Part A—General Requirements</td>
<td>6.2 General</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>6.3 Common Requirements for WPS and Welding Personnel Performance Qualification</td>
<td>125</td>
</tr>
<tr>
<td>Part B—Welding Procedure Specification (WPS) Qualification</td>
<td>6.4 Production Welding Positions Qualified</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6.5 Type of Qualification Tests</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6.6 Weld Types for WPS Qualification</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>6.7 Preparation of WPS</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>6.8 Essential Variables</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>6.9 WPS Requirements for Production Welding Using Existing Non-Waveform or Waveform WPSs</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>6.10 Methods of Testing and Acceptance Criteria for WPS Qualification</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>6.11 CJP Groove Welds</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>6.12 PJP Groove Welds</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>6.13 Fillet Welds</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>6.14 Plug and Slot Welds</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>6.15 Welding Processes Requiring Qualification</td>
<td>132</td>
</tr>
<tr>
<td>Part C—Performance Qualification</td>
<td>6.16 General</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>6.17 Type of Qualification Tests Required</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>6.18 Weld Types for Welder and Welding Operator Performance Qualification</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>6.19 Preparation of Performance Qualification Forms</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>6.20 Essential Variables</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>6.21 CJP Groove Welds for Nontubular Connections</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>6.22 Extent of Qualification</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>6.23 Methods of Testing and Acceptance Criteria for Welder and Welding Operator Qualification</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>6.24 Method of Testing and Acceptance Criteria for Tack Welder Qualification</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>6.25 Retest</td>
<td>135</td>
</tr>
<tr>
<td>Part D—Requirements for CVN Toughness Testing</td>
<td>6.26 General: CVN Testing</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>6.27 CVN Tests</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>6.28 Combining FCAW-S with Other Welding Processes in a Single Joint</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>6.29 Reporting</td>
<td>138</td>
</tr>
</tbody>
</table>
7. Fabrication ... 188
 7.1 Scope .. 188
 7.2 Base Metal .. 188
 7.3 Welding Consumables and Electrode Requirements 188
 7.4 ESW and EGW Processes .. 190
 7.5 WPS Variables ... 191
 7.6 Preheat and Interpass Temperatures 191
 7.7 Heat Input Control for Quenched and Tempered Steels 191
 7.8 Stress-Relief Heat Treatment ... 191
 7.9 Backing .. 192
 7.10 Welding and Cutting Equipment 193
 7.11 Welding Environment .. 193
 7.12 Conformance with Design ... 193
 7.13 Minimum Fillet Weld Sizes ... 193
 7.14 Preparation of Base Metal .. 193
 7.15 Reentrant Corners ... 195
 7.16 Weld Access Holes, Beam Copes, and Connection Material 196
 7.17 Tack Welds and Construction Aid Welds 196
 7.18 Camber in Built-Up Members ... 197
 7.19 Splices .. 197
 7.20 Control of Distortion and Shrinkage 197
 7.21 Tolerance of Joint Dimensions 198
 7.22 Dimensional Tolerance of Welded Structural Members 199
 7.23 Weld Profiles .. 201
 7.24 Technique for Plug and Slot Welds 202
 7.25 Repairs .. 202
 7.26 Peening .. 203
 7.27 Caulking .. 204
 7.28 Arc Strikes ... 204
 7.29 Weld Cleaning .. 204
 7.30 Weld Tabs .. 204

8. Inspection ... 216
 Part A—General Requirements .. 216
 8.1 Scope .. 216
 8.2 Inspection of Materials and Equipment 218
 8.3 Inspection of WPSs ... 218
 8.4 Inspection of Welder, Welding Operator, and Tack Welder Qualifications ... 218
 8.5 Inspection of Work and Records 218
 Part B—Contractor Responsibilities 219
 8.6 Obligations of the Contractor .. 219
 Part C—Acceptance Criteria ... 219
 8.7 Scope .. 219
 8.8 Engineer’s Approval for Alternate Acceptance Criteria 219
 8.9 Visual Inspection ... 219
 8.10 Penetrant Testing (PT) and Magnetic Particle Testing (MT) 219
 8.11 Nondestructive Testing (NDT) ... 220
 8.12 Radiographic Testing (RT) .. 220
 8.13 Ultrasonic Testing (UT) ... 221
 Part D—NDT Procedures .. 222
 8.14 Procedures .. 222
 8.15 Extent of Testing .. 223

xix
10.14 CJP Groove Welds for Tubular Connections .. 289
10.15 PJP and Fillet Welds Tubular T-, Y-, or K-Connections and Butt Joints 290

Part D—Performance Qualification ... 290
10.16 Production Welding Positions, Thicknesses, and Diameters Qualified 290
10.17 Weld Types for Welder and Welding Operator Performance Qualification 291
10.18 CJP Groove Welds for Tubular Connections .. 291
10.19 PJP Groove Welds for Tubular Connections .. 291
10.20 Fillet Welds for Tubular Connections ... 291
10.21 Methods of Testing and Acceptance Criteria for Welder and Welding Operator Qualification ... 292

Part E—Fabrication ... 292
10.22 Backing .. 292
10.23 Tolerance of Joint Dimensions .. 293

Part F—Inspection ... 293
10.24 Visual Inspection .. 293
10.25 NDT .. 293
10.26 UT .. 293
10.27 RT Procedures ... 294
10.28 Supplementary RT Requirements for Tubular Connections 294
10.29 UT of Tubular T-, Y-, and K-Connections .. 294

11. Strengthening and Repair of Existing Structures ... 347
11.1 Scope ... 347
11.2 General ... 347
11.3 Base Metal .. 347
11.4 Design for Strengthening and Repair ... 347
11.5 Fatigue Life Enhancement .. 348
11.6 Workmanship and Technique ... 348
11.7 Quality .. 348

Annexes ... 349
Annex A (Normative)—Effective Throats of Fillet Welds in Skewed T-Joints 351
Annex B (Normative)—Guideline on Alternative Methods for Determining Preheat ... 353
Annex D (Normative)—Temperature-Moisture Content Charts 365
Annex E (Normative)—Flatness of Girder Webs—Statically Loaded Structures 369
Annex F (Normative)—Flatness of Girder Webs—Cyclically Loaded Structures 373
Annex G (Normative)—Qualification and Calibration of UT Units with Other Approved Reference Blocks ... 379
Annex H (Normative)—Phased Array Ultrasonic Testing (PAUT) 383
Annex I (Normative)—Symbols for Tubular Connection Weld Design 399
Annex J (Informative)—Sample Welding Forms ... 403
Annex K (Informative)—Contents of Prequalified WPS 425
Annex L (Informative)—Filler Metal Strength Properties 427
Annex M (Informative)—AWS A5.36 Filler Metal Classifications and Properties 439
Annex N (Informative)—Guide for Specification Writers 455
Annex Q (Informative)—UT Examination of Welds by Alternative Techniques 457
Annex P (Informative)—UT Equipment Qualification and Inspection Forms 475
Annex Q (Informative)—Local Dihedral Angle ... 485
Annex R (Informative)—Ovalizing Parameter Alpha 491
Annex S (Informative)—List of Reference Documents 497
Annex T (Informative)—Guidelines for the Preparation of Technical Inquiries for the Structural Welding Committee ... 499

Commentary ... 501
List of AWS Documents on Structural Welding ... 619
Index ... 621
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Effective Size of Flare-Groove Welds Filled Flush</td>
</tr>
<tr>
<td>4.2</td>
<td>Z Loss Dimension (Nontubular)</td>
</tr>
<tr>
<td>4.3</td>
<td>Allowable Stresses</td>
</tr>
<tr>
<td>4.4</td>
<td>Equivalent Stress Coefficients for Obliquely Loaded Fillet Welds</td>
</tr>
<tr>
<td>4.5</td>
<td>Fatigue Stress Design Parameters</td>
</tr>
<tr>
<td>5.1</td>
<td>Prequalified WPS Requirements</td>
</tr>
<tr>
<td>5.2</td>
<td>Essential Variables for Prequalified WPSs</td>
</tr>
<tr>
<td>5.3</td>
<td>Approved Base Metals for Prequalified WPSs</td>
</tr>
<tr>
<td>5.4</td>
<td>Filler Metals for Matching Strength for Table 5.3, Groups I, II, III, and IV Materials</td>
</tr>
<tr>
<td>5.5</td>
<td>Minimum Prequalified PJP Weld Size (S)</td>
</tr>
<tr>
<td>5.6</td>
<td>Filler Metal Requirements for Exposed Bare Applications of Weathering Steels</td>
</tr>
<tr>
<td>5.7</td>
<td>Prequalified WPS Shielding Gas Options for GMAW electrodes conforming to AWS A5.18/A5.18M</td>
</tr>
<tr>
<td>5.8</td>
<td>Prequalified Minimum Preheat and Interpass Temperature</td>
</tr>
<tr>
<td>6.1</td>
<td>WPS Qualification—Production Welding Positions Qualified by Plate, Pipe, and Box Tube Tests</td>
</tr>
<tr>
<td>6.2</td>
<td>WPS Qualification—CJP Groove Welds: Number and Type of Test Specimens and Range of Thickness Qualified</td>
</tr>
<tr>
<td>6.3</td>
<td>WPS Qualification—PJP Groove Welds: Number and Type of Test Specimens and Range of Thickness Qualified</td>
</tr>
<tr>
<td>6.4</td>
<td>WPS Qualification—Fillet Welds: Number and Type of Test Specimens and Range of Thickness Qualified</td>
</tr>
<tr>
<td>6.5</td>
<td>PQR Essential Variable Changes Requiring WPS Requalification for SMAW, SAW, GMAW, FCAW, and GTAW</td>
</tr>
<tr>
<td>6.6</td>
<td>PQR Essential Variable Changes Requiring WPS Requalification for ESW or EGW</td>
</tr>
<tr>
<td>6.7</td>
<td>PQR Supplementary Essential Variable Changes for CVN Testing Applications Requiring WPS Requalification for SMAW, SAW, GMAW, FCAW, GTAW, and ESW/EGW</td>
</tr>
<tr>
<td>6.8</td>
<td>Table 5.1, Table 6.9, and Unlisted Steels Qualified by PQR</td>
</tr>
<tr>
<td>6.9</td>
<td>Code-Approved Base Metals and Filler Metals Requiring Qualification per Clause 6</td>
</tr>
<tr>
<td>6.10</td>
<td>Welder and Welding Operator Qualification—Production Welding Positions Qualified by Plate Tests</td>
</tr>
<tr>
<td>6.11</td>
<td>Welder and Welding Operator Qualification—Number and Type of Specimens and Range of Thickness and Diameter Qualified</td>
</tr>
<tr>
<td>6.12</td>
<td>Welding Personnel Performance Essential Variable Changes Requiring Requalification</td>
</tr>
<tr>
<td>6.13</td>
<td>Electrode Classification Groups</td>
</tr>
<tr>
<td>6.14</td>
<td>CVN Test Temperature Reduction</td>
</tr>
<tr>
<td>6.15</td>
<td>Charpy V-Notch Test Acceptance Criteria for Various Sub-Size Specimens</td>
</tr>
<tr>
<td>6.16</td>
<td>Filler Metal Essential Variables—FCAW-S Substrate/Root</td>
</tr>
<tr>
<td>7.1</td>
<td>Allowable Atmospheric Exposure of Low-Hydrogen Electrodes</td>
</tr>
<tr>
<td>7.2</td>
<td>Minimum Holding Time</td>
</tr>
<tr>
<td>7.3</td>
<td>Alternate Stress-Relief Heat Treatment</td>
</tr>
<tr>
<td>7.4</td>
<td>Limits on Acceptability and Repair of Mill Induced Laminar Discontinuities in Cut Surfaces</td>
</tr>
<tr>
<td>7.5</td>
<td>Camber Tolerance for Typical Girder</td>
</tr>
<tr>
<td>7.6</td>
<td>Camber Tolerance for Girder without a Designed Concrete Haunch</td>
</tr>
<tr>
<td>7.7</td>
<td>Minimum Fillet Weld Sizes</td>
</tr>
<tr>
<td>7.8</td>
<td>Weld Profiles</td>
</tr>
<tr>
<td>7.9</td>
<td>Weld Profile Schedules</td>
</tr>
</tbody>
</table>

xxii
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Visual Inspection Acceptance Criteria</td>
</tr>
<tr>
<td>8.2</td>
<td>UT Acceptance-Rejection Criteria (Statically Loaded Nontubular Connections and Cyclically Loaded Nontubular Connections in Compression)</td>
</tr>
<tr>
<td>8.3</td>
<td>UT Acceptance-Rejection Criteria (Cyclically Loaded Nontubular Connections in Tension)</td>
</tr>
<tr>
<td>8.4</td>
<td>Hole-Type IQI Requirements</td>
</tr>
<tr>
<td>8.5</td>
<td>Wire IQI Requirements</td>
</tr>
<tr>
<td>8.6</td>
<td>IQI Selection and Placement</td>
</tr>
<tr>
<td>8.7</td>
<td>Testing Angle</td>
</tr>
<tr>
<td>8.8</td>
<td>UT Equipment Qualification and Calibration Requirements</td>
</tr>
<tr>
<td>9.1</td>
<td>Mechanical Property Requirements for Studs</td>
</tr>
<tr>
<td>9.2</td>
<td>Minimum Fillet Weld Size for Small Diameter Studs</td>
</tr>
<tr>
<td>10.1</td>
<td>Fatigue Stress Design Parameters</td>
</tr>
<tr>
<td>10.2</td>
<td>Available Stresses in Tubular Connection Welds.</td>
</tr>
<tr>
<td>10.3</td>
<td>Stress Categories for Type and Location of Material for Circular Sections</td>
</tr>
<tr>
<td>10.4</td>
<td>Fatigue Category Limitations on Weld Size or Thickness and Weld Profile (Tubular Connections)</td>
</tr>
<tr>
<td>10.5</td>
<td>Z Loss Dimensions for Calculating Prequalified PJP T-, Y-, and K-Tubular Connection Minimum Weld Sizes</td>
</tr>
<tr>
<td>10.6</td>
<td>Joint Detail Applications for Prequalified CJP T-, Y-, and K-Tubular Connections</td>
</tr>
<tr>
<td>10.8</td>
<td>WPS Qualification—Production Welding Positions Qualified by Plate, Pipe, and Box Tube Tests</td>
</tr>
<tr>
<td>10.9</td>
<td>WPS Qualification—CJP Groove Welds: Number and Type of Test Specimens and Range of Thickness and Diameter Qualified</td>
</tr>
<tr>
<td>10.10</td>
<td>WPS Qualification—PJP Groove Welds: Number and Type of Test Specimens and Range of Thickness Qualified</td>
</tr>
<tr>
<td>10.11</td>
<td>WPS Qualification—Fillet Welds: Number and Type of Test Specimens and Range of Thickness Qualified</td>
</tr>
<tr>
<td>10.12</td>
<td>Welder and Welding Operator Qualification—Production Welding Positions Qualified by Pipe and Box Tube Tests</td>
</tr>
<tr>
<td>10.13</td>
<td>Welder and Welding Operator Qualification—Number and Type of Specimens and Range of Thickness and Diameter Qualified</td>
</tr>
<tr>
<td>10.15</td>
<td>Visual Inspection Acceptance Criteria</td>
</tr>
<tr>
<td>10.16</td>
<td>Hole-Type IQI Requirements</td>
</tr>
<tr>
<td>10.17</td>
<td>Wire IQI Requirements</td>
</tr>
<tr>
<td>10.18</td>
<td>IQI Selection and Placement</td>
</tr>
<tr>
<td>A.1</td>
<td>Equivalent Fillet Weld Leg Size Factors for Skewed T-Joints</td>
</tr>
<tr>
<td>B.1</td>
<td>Susceptibility Index Grouping as Function of Hydrogen Level “H” and Composition Parameter P<sub>em</sub></td>
</tr>
<tr>
<td>B.2</td>
<td>Minimum Preheat and Interpass Temperatures for Three Levels of Restraint.</td>
</tr>
<tr>
<td>E.1</td>
<td>Intermediate Stiffeners on Both Sides of Web.</td>
</tr>
<tr>
<td>E.2</td>
<td>No Intermediate Stiffeners</td>
</tr>
<tr>
<td>E.3</td>
<td>Intermediate Stiffeners on One Side Only of Web.</td>
</tr>
<tr>
<td>F.1</td>
<td>Intermediate Stiffness on Both Sides of Web, Interior Girders</td>
</tr>
<tr>
<td>F.2</td>
<td>Intermediate Stiffness on One Side Only of Web, Fascia Girders</td>
</tr>
<tr>
<td>F.3</td>
<td>Intermediate Stiffness on One Side Only of Web, Interior Girders</td>
</tr>
<tr>
<td>F.4</td>
<td>Intermediate Stiffness on Both Sides of Web, Fascia Girders</td>
</tr>
<tr>
<td>F.5</td>
<td>No Intermediate Stiffeners, Interior or Fascia Girders.</td>
</tr>
<tr>
<td>H.1</td>
<td>Essential Variables for PAUT.</td>
</tr>
<tr>
<td>H.2</td>
<td>PAUT Acceptance Criteria</td>
</tr>
<tr>
<td>H.3</td>
<td>Discontinuity Classification.</td>
</tr>
<tr>
<td>M.1</td>
<td>AWS A5.36/A5.36M Carbon Steel Electrode Classifications with Fixed Requirements</td>
</tr>
<tr>
<td>M.2</td>
<td>AWS A5.36/A5.36M Tension Test Requirements</td>
</tr>
<tr>
<td>M.3</td>
<td>AWS A5.36/A5.36M Charpy Impact Test Requirements</td>
</tr>
<tr>
<td>M.4</td>
<td>Electrode Usability Characteristics</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td></td>
<td>Fillet Weld</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>Unreinforced Bevel Groove Weld</td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td>Bevel Groove Weld with Reinforcing Fillet Weld</td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td>Bevel Groove Weld with Reinforcing Fillet Weld</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>Unreinforced Flare Bevel Groove Weld</td>
</tr>
<tr>
<td>4.6</td>
<td></td>
<td>Flare Bevel Groove Weld with Reinforcing Fillet Weld</td>
</tr>
<tr>
<td>4.7</td>
<td></td>
<td>Maximum Fillet Weld Size Along Edges in Lap Joints</td>
</tr>
<tr>
<td>4.8</td>
<td></td>
<td>Transition of Thicknesses (Statically Loaded Nontubular)</td>
</tr>
<tr>
<td>4.9</td>
<td></td>
<td>Transversely Loaded Fillet Welds</td>
</tr>
<tr>
<td>4.10</td>
<td></td>
<td>Minimum Length of Longitudinal Fillet Welds at End of Plate or Flat Bar Members</td>
</tr>
<tr>
<td>4.11</td>
<td></td>
<td>Termination of Welds Near Edges Subject to Tension</td>
</tr>
<tr>
<td>4.12</td>
<td></td>
<td>End Return at Flexible Connections</td>
</tr>
<tr>
<td>4.13</td>
<td></td>
<td>Fillet Welds on Opposite Sides of a Common Plane</td>
</tr>
<tr>
<td>4.14</td>
<td></td>
<td>Thin Filler Plates in Splice Joint</td>
</tr>
<tr>
<td>4.15</td>
<td></td>
<td>Thick Filler Plates in Splice Joint</td>
</tr>
<tr>
<td>4.16</td>
<td></td>
<td>Allowable Stress Range for Cyclically Applied Load (Fatigue) in Nontubular Connections</td>
</tr>
<tr>
<td>4.17</td>
<td></td>
<td>Transition of Butt Joints in Parts of Unequal Thickness (Cyclically Loaded Nontubular)</td>
</tr>
<tr>
<td>4.18</td>
<td></td>
<td>Transition of Width (Cyclically Loaded Nontubular)</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>Prequalified CJP Groove Welded Joint Details (Dimensions in Inches)</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>Prequalified CJP Groove Welded Joint Details (Dimensions in Millimeters)</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>Prequalified PJP Groove Welded Joint Details (Dimensions in Inches)</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>Prequalified PJP Groove Welded Joint Details (Dimensions in Millimeters)</td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td>Prequalified Fillet Weld Joint Details (Dimensions in Inches)</td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td>Prequalified Fillet Weld Joint Details (Dimensions in Millimeters)</td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td>Prequalified Skewed T-Joint Details (Nontubular)</td>
</tr>
</tbody>
</table>
5.5 Prequalified CJP Groove, T-, and Corner Joint .. 123
5.6 Weld Bead in which Depth and Width Exceed the Width of the Weld Face 123
6.1 Positions of Groove Welds ... 160
6.2 Positions of Fillet Welds .. 161
6.3 Positions of Test Plates for Groove Welds ... 162
6.4 Positions of Test Plate for Fillet Welds .. 163
6.5 Location of Test Specimens on Welded Test Plates—ESW and EGW—WPS Qualification ... 164
6.6 Location of Test Specimens on Welded Test Plate Over 3/8 in [10 mm] Thick—WPS Qualification ... 165
6.7 Location of Test Specimens on Welded Test Plate 3/8 in [10 mm] Thick and Under—WPS Qualification ... 166
6.8 Face and Root Bend Specimens ... 167
6.9 Side Bend Specimens ... 168
6.10 Reduced-Section Tension Specimens ... 169
6.11 Guided Bend Test Jig .. 170
6.12 Alternative Wraparound Guided Bend Test Jig ... 171
6.13 Alternative Roller-Equipped Guided Bend Test Jig for Bottom Ejection of Test Specimen ... 171
6.14 All-Weld-Metal Tension Specimen ... 172
6.15 Fillet Weld Soundness Tests for WPS Qualification 173
6.16 Test Plate for Unlimited Thickness—Welder Qualification and Fillet Weld Consumable Verification Tests .. 174
6.17 Test Plate for Unlimited Thickness—Welding Operator Qualification and Fillet Weld Consumable Verification Tests .. 174
6.18 Location of Test Specimen on Welded Test Plate 1 in [25 mm] Thick—Consumables Verification for Fillet Weld WPS Qualification ... 175
6.19 Optional Test Plate for Unlimited Thickness—Horizontal Position—Welder Qualification ... 176
6.20 Test Plate for Limited Thickness—All Positions—Welder Qualification ... 177
6.21 Optional Test Plate for Limited Thickness—Horizontal Position—Welder Qualification ... 178
6.22 Fillet Weld Root Bend Test Plate—Welder or Welding Operator Qualification—Option 2 ... 179
6.23 Method of Rupturing Specimen—Tack Welder Qualification 180
6.24 Butt Joint for Welding Operator Qualification—ESW and EGW 180
6.25 Fillet Weld Break and Macroetch Test Plate—Welder or Welding Operator Qualification Option 1 ... 181
6.26 Plug Weld Macroetch Test Plate—Welder or Welding Operator Qualification and WPS Qualification ... 182
6.27 Fillet Weld Break Specimen—Tack Welder Qualification 183
6.28 CVN Test Specimen Locations .. 184
6.29 Macroetch Test Assemblies for Determination of PJP Weld Size 185
6.30 Intermix Test Plate .. 186
6.31 Interface Scribe Line Location ... 187
6.32 Intermix CVN Test Specimen Location .. 187
7.1 Edge Discontinuities in Cut Material ... 209
7.2 Weld Access Hole Geometry ... 210
7.3 Workmanship Tolerances in Assembly of Groove Welded Joints 211
7.4 Requirements for Weld Profiles .. 212
8.1 Discontinuity Acceptance Criteria for Statically Loaded Nontubular and Cyclically Loaded Tubular Connections ... 247
8.2 Discontinuity Acceptance Criteria for Cyclically Loaded Nontubular Connections in Tension (Limitations of Porosity and Fusion Discontinuities) 251
8.3 Discontinuity Acceptance Criteria for Cyclically Loaded Nontubular Connections in Compression (Limitations of Porosity or Fusion-Type Discontinuities) ... 255
8.4 Hole-Type IQI .. 259
8.5 Wire IQI .. 260
8.6 RT Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints 10 in [250 mm] and Greater in Length ... 261
8.7 RT Identification and Hole-Type or Wire IQI Locations on Approximately Equal Thickness Joints Less than 10 in [250 mm] in Length ... 261
RT Identification and Hole-Type or Wire IQI Locations on Transition Joints 10 in [250 mm] and Greater in Length ... 262
RT Identification and Hole-Type or Wire IQI Locations on Transition Joints Less than 10 in [250 mm] in Length ... 263
RT Edge Blocks ... 263
Transducer Crystal ... 264
Qualification Procedure of Search Unit Using IIW Reference Block 264
Typical IIW Type Block .. 265
Qualification Blocks ... 266
Plan View of UT Scanning Patterns .. 268
Transducer Positions (Typical) .. 269
Dimension and Tolerances of Standard-Type Headed Studs 278
Typical Tension Test Fixture ... 279
Torque Testing Arrangement and Table of Testing Torques 280
Bend Testing Device ... 281
Suggested Type of Device for Qualification Testing of Small Studs 282
Allowable Fatigue Stress and Strain Ranges for Stress Categories, Tubular Structures for Atmospheric Service ... 315
Parts of a Tubular Connection .. 316
Fillet Welded Lap Joint (Tubular) .. 319
Transition of Thickness of Butt Joints in Parts of Unequal Thickness (Tubular) ... 320
Fillet Welded Prequalified Tubular Joints Made by SMAW, GMAW, and FCAW ... 321
Prequalified Joint Details for PJP T-, Y-, and K-Tubular Connections 322
Prequalified Joint Details for CJP T-, Y-, and K-Tubular Connections 325
Definitions and Detailed Selections for Prequalified CJP T-, Y-, and K-Tubular Connections ... 326
Prequalified Joint Details for CJP Groove Welds in Tubular T-, Y-, and K-Connections—Standard Flat Profiles for Limited Thickness ... 327
Prequalified Joint Details for CJP Groove Welds in Tubular T-, Y-, and K-Connections—Profile with Toe Fillet for Intermediate Thickness 328
Prequalified Joint Details for CJP Groove Welds in Tubular T-, Y-, and K-Connections—Concave Improved Profile for Heavy Sections or Fatigue ... 329
Positions of Test Pipe or Tubing for Groove Welds 330
Positions of Test Pipes or Tubing for Fillet Welds 331
Location of Test Specimens on Welded Test Pipe—WPS Qualification ... 332
Location of Test Specimens for Welded Box Tubing—WPS Qualification ... 333
Pipe Fillet Weld Soundness Test—WPS Qualification 334
Tubular Butt Joint—Welder Qualification with and without Backing 335
Tubular Butt Joint—WPS Qualification with and without Backing 335
Acute Angle Heel Test (Restraints not Shown) 336
Test Joint for T-, Y-, and K-Connections without Backing on Pipe or Box Tubing (≥ 6 in [150 mm] O.D.)—Welder and WPS Qualification ... 337
Test Joint for T-, Y-, and K-Connections without Backing on Pipe or Box Tubing (< 4 in [100 mm] O.D.)—Welder and WPS Qualification ... 338
Corner Macroetch Test Joint for T-, Y-, and K-Connections without Backing on Box Tubing for CJP Groove Welds—Welder and WPS Qualification ... 339
Location of Test Specimens on Welded Test Pipe and Box Tubing—Welder Qualification ... 340
Class R Indications .. 341
Class X Indications .. 343
Single-Wall Exposure—Single-Wall View .. 344
Double-Wall Exposure—Single-Wall View .. 344
Double-Wall Exposure—Double-Wall (Elliptical) View, Minimum Two Exposures ... 345
Double-Wall Exposure—Double-Wall View, Minimum Three Exposures ... 345
Scanning Techniques ... 346
Zone Classification of Steels ... 359
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2</td>
<td>Critical Cooling Rate for 350 HV and 400 HV</td>
<td>359</td>
</tr>
<tr>
<td>B.3</td>
<td>Graphs to Determine Cooling Rates for Single-Pass SAW Fillet Welds</td>
<td>360</td>
</tr>
<tr>
<td>B.4</td>
<td>Relation Between Fillet Weld Size and Energy Input</td>
<td>363</td>
</tr>
<tr>
<td>D.1</td>
<td>Temperature-Moisture Content Chart to be Used in Conjunction with Testing Program to</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Determine Extended Atmospheric Exposure Time of Low-Hydrogen SMAW Electrodes</td>
<td></td>
</tr>
<tr>
<td>D.2</td>
<td>Application of Temperature-Moisture Content Chart in Determining Atmospheric Exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time of Low-Hydrogen SMAW Electrodes</td>
<td>367</td>
</tr>
<tr>
<td>G.1</td>
<td>Other Approved Blocks and Typical Transducer Position</td>
<td>381</td>
</tr>
<tr>
<td>H.1</td>
<td>Phased Array Imaging Views</td>
<td>394</td>
</tr>
<tr>
<td>H.2</td>
<td>Example of a Supplemental Reference Block</td>
<td>394</td>
</tr>
<tr>
<td>H.3</td>
<td>Example Standard Reflector Locations in Weld Mockup</td>
<td>395</td>
</tr>
<tr>
<td>H.4</td>
<td>Sensitivity Levels</td>
<td>395</td>
</tr>
<tr>
<td>H.5</td>
<td>Example of Time Based Linearity Verification</td>
<td>396</td>
</tr>
<tr>
<td>H.6</td>
<td>Linearity Verification Report Form</td>
<td>397</td>
</tr>
<tr>
<td>M.1</td>
<td>AWS A5.36/A5.36M Open Classification System</td>
<td>454</td>
</tr>
<tr>
<td>O.1</td>
<td>Standard Reference Reflector</td>
<td>465</td>
</tr>
<tr>
<td>O.2</td>
<td>Recommended Calibration Block</td>
<td>465</td>
</tr>
<tr>
<td>O.3</td>
<td>Typical Standard Reflector (Located in Weld Mock-Ups and Production Welds)</td>
<td>466</td>
</tr>
<tr>
<td>O.4</td>
<td>Transfer Correction</td>
<td>467</td>
</tr>
<tr>
<td>O.5</td>
<td>Compression Wave Depth (Horizontal Sweep Calibration)</td>
<td>467</td>
</tr>
<tr>
<td>O.6</td>
<td>Compression Wave Sensitivity Calibration</td>
<td>468</td>
</tr>
<tr>
<td>O.7</td>
<td>Shear Wave Distance and Sensitivity Calibration</td>
<td>468</td>
</tr>
<tr>
<td>O.8</td>
<td>Scanning Methods</td>
<td>469</td>
</tr>
<tr>
<td>O.9</td>
<td>Spherical Discontinuity Characteristics</td>
<td>470</td>
</tr>
<tr>
<td>O.10</td>
<td>Cylindrical Discontinuity Characteristics</td>
<td>470</td>
</tr>
<tr>
<td>O.11</td>
<td>Planar Discontinuity Characteristics</td>
<td>471</td>
</tr>
<tr>
<td>O.12</td>
<td>Discontinuity Height Dimension</td>
<td>471</td>
</tr>
<tr>
<td>O.13</td>
<td>Discontinuity Length Dimension</td>
<td>472</td>
</tr>
<tr>
<td>O.14</td>
<td>Display Screen Marking</td>
<td>472</td>
</tr>
<tr>
<td>O.15</td>
<td>Report of UT (Alternative Procedure)</td>
<td>473</td>
</tr>
<tr>
<td>R.1</td>
<td>Simplified Concept of Punching Shear</td>
<td>495</td>
</tr>
<tr>
<td>R.2</td>
<td>Reliability of Punching Shear Criteria Using Computed Alpha</td>
<td>495</td>
</tr>
<tr>
<td>R.3</td>
<td>Definition of Terms for Computed Alpha</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Commentary</td>
<td>501</td>
</tr>
<tr>
<td>C-4.1</td>
<td>Balancing of Fillet Welds About a Neutral Axis</td>
<td>521</td>
</tr>
<tr>
<td>C-4.2</td>
<td>Shear Planes for Fillet and Groove Welds</td>
<td>521</td>
</tr>
<tr>
<td>C-4.3</td>
<td>Eccentric Loading</td>
<td>522</td>
</tr>
<tr>
<td>C-4.4</td>
<td>Load Deformation Relationship for Welds</td>
<td>522</td>
</tr>
<tr>
<td>C-4.5</td>
<td>Example of an Obliquely Loaded Weld Group</td>
<td>523</td>
</tr>
<tr>
<td>C-4.6</td>
<td>Graphical Solution of the Capacity of an Obliquely Loaded Weld Group</td>
<td>524</td>
</tr>
<tr>
<td>C-4.7</td>
<td>Single Fillet Welded Lap Joints</td>
<td>525</td>
</tr>
<tr>
<td>C-5.1</td>
<td>Examples of Centerline Cracking</td>
<td>534</td>
</tr>
<tr>
<td>C-5.2</td>
<td>Details of Alternative Groove Preparations for Prequalified Corner Joints</td>
<td>535</td>
</tr>
<tr>
<td>C-5.3</td>
<td>Oscillograms and Sketches of GMAW-S Metal Transfer</td>
<td>535</td>
</tr>
<tr>
<td>C-6.1</td>
<td>Type of Welding on Pipe That Does Not Require Pipe Qualification</td>
<td>540</td>
</tr>
<tr>
<td>C-7.1</td>
<td>Examples of Unacceptable Reentrant Corners</td>
<td>554</td>
</tr>
<tr>
<td>C-7.2</td>
<td>Examples of Good Practice for Cutting Copes</td>
<td>554</td>
</tr>
<tr>
<td>C-7.3</td>
<td>Permissible Offset in Abutting Members</td>
<td>554</td>
</tr>
<tr>
<td>C-7.4</td>
<td>Correction of Misaligned Members</td>
<td>555</td>
</tr>
<tr>
<td>C-7.5</td>
<td>Typical Method to Determine Variations in Girder Web Flatness</td>
<td>555</td>
</tr>
<tr>
<td>C-7.6</td>
<td>Illustration Showing Camber Measurement Methods</td>
<td>556</td>
</tr>
<tr>
<td>C-7.7</td>
<td>Measurement of Flange Warpage and Tilt</td>
<td>557</td>
</tr>
<tr>
<td>C-7.8</td>
<td>Tolerances at Bearing Points</td>
<td>558</td>
</tr>
<tr>
<td>C-8.1</td>
<td>90° T- or Corner Joints with Steel Backing</td>
<td>572</td>
</tr>
</tbody>
</table>
C-8.2 Skewed T- or Corner Joints .. 572
C-8.3 Butt Joints with Separation Between Backing and Joint .. 573
C-8.4 Effect of Root Opening on Butt Joints with Steel Backing .. 573
C-8.5 Resolutions for Scanning with Seal Welded Steel Backing .. 574
C-8.6 Scanning with Seal Welded Steel Backing .. 574
C-8.7 Illustration of Discontinuity Acceptance Criteria for Statically Loaded Nontubular and Statically
 or Cyclically Loaded Tubular Connections ... 575
C-8.8 Illustration of Discontinuity Acceptance Criteria for Statically Loaded Nontubular and Statically
 or Cyclically Loaded Tubular Connections 1-1/8 in [30 mm] and Greater, Typical of Random
 Acceptable Discontinuities ... 576
C-9.1 Allowable Defects in the Heads of Headed Studs ... 581
C-10.1 Illustrations of Branch Member Stresses Corresponding to Mode of Loading 599
C-10.2 Improved Weld Profile Requirements .. 600
C-10.3 Upper Bound Theorem ... 600
C-10.4 Yield Line Patterns .. 601
C-11.1 Microscopic Intrusions ... 609
C-11.2 Fatigue Life .. 609
C-11.3 Toe Dressing with Burr Grinder .. 610
C-11.4 Toe Dressing Normal to Stress .. 610
C-11.5 Effective Toe Grinding ... 611
C-11.6 End Grinding ... 611
C-11.7 Hammer Peening ... 612
C-11.8 Toe Remelting ... 612
1. General Requirements

1.1 Scope

This code contains the requirements for fabricating and erecting welded steel structures. When this code is stipulated in contract documents, conformance with all provisions of the code shall be required, except for those provisions that the Engineer (see 1.5.1) or contract documents specifically modifies or exempts.

The following is a summary of the code clauses:

1. General Requirements. This clause contains basic information on the scope and limitations of the code, key definitions, and the major responsibilities of the parties involved with steel fabrication.

2. Normative References. This clause contains a list of reference documents that assist the user in implementation of this code or are required for implementation.

3. Terms and Definitions. This clause contains terms and definitions as they relate to this code.

4. Design of Welded Connections. This clause contains requirements for the design of welded connections composed of tubular, or nontubular, product form members.

5. Prequalification of WPSs. This clause contains the requirements for exempting a Welding Procedure Specification (WPS) from the WPS qualification requirements of this code.

6. Qualification. This clause contains the requirements for WPS qualification and the performance qualification tests required to be passed by all welding personnel (welders, welding operators, and tack welders) to perform welding in accordance with this code.

7. Fabrication. This clause contains general fabrication and erection requirements applicable to welded steel structures governed by this code, including the requirements for base metals, welding consumables, welding technique, welded details, material preparation and assembly, workmanship, weld repair, and other requirements.

8. Inspection. This clause contains criteria for the qualifications and responsibilities of inspectors, acceptance criteria for production welds, and standard procedures for performing visual inspection and nondestructive testing (NDT).

9. Stud Welding. This clause contains the requirements for the welding of studs to structural steel.

10. Tubular Structures. This clause contains exclusive tubular requirements. Additionally, the requirements of all other clauses apply to tubulars, unless specifically noted otherwise.

11. Strengthening and Repair of Existing Structures. This clause contains basic information pertinent to the welded modification or repair of existing steel structures.

1.2 Standard Units of Measurement

This standard makes use of both U.S. Customary Units and the International System of Units (SI). The latter are shown within brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.
1.3 Safety Precautions

Safety and health issues and concerns are beyond the scope of this standard and therefore are not fully addressed herein. It is the responsibility of the user to establish appropriate safety and health practices. Safety and health information is available from the following sources:

American Welding Society:

1. ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
2. AWS Safety and Health Fact Sheets
3. Other safety and health information on the AWS website

Material or Equipment Manufacturers:

1. Safety Data Sheets supplied by materials manufacturers
2. Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

1.4 Limitations

The code was specifically developed for welded steel structures that utilize carbon or low alloy steels that are 1/8 in [3 mm] or thicker with a minimum specified yield strength of 100 ksi [690 MPa] or less. The code may be suitable to govern structural fabrications outside the scope of the intended purpose. However, the Engineer should evaluate such suitability, and based upon such evaluations, incorporate into contract documents any necessary changes to code requirements to address the specific requirements of the application that is outside the scope of the code. The Structural Welding Committee encourages the Engineer to consider the applicability of other AWS D1 codes for applications involving aluminum (AWS D1.2), sheet steel equal to or less than 3/16 in [5 mm] thick (AWS D1.3), reinforcing steel (AWS D1.4), stainless steel (AWS D1.6), strengthening and repair of existing structures (AWS D1.7), seismic supplement (AWS D1.8), and titanium (AWS D1.9). The AASHTO/AWS D1.5 Bridge Welding Code was specifically developed for welding highway bridge components and is recommended for those applications.

1.5 Responsibilities

1.5.1 Engineer’s Responsibilities. The Engineer shall be responsible for the development of the contract documents that govern products or structural assemblies produced under this code. The Engineer may add to, delete from, or otherwise modify, the requirements of this code to meet the particular requirements of a specific structure. All requirements that modify this code shall be incorporated into contract documents. The Engineer shall determine the suitability of all joint details to be used in a welded assembly.

The Engineer shall specify in contract documents, as necessary, and as applicable, the following:

1. Code requirements that are applicable only when specified by the Engineer.
2. All additional NDT that is not specifically addressed in the code.
3. Extent of verification inspection, when required.
4. Weld acceptance criteria other than that specified in Clause 8.
5. CVN toughness criteria for weld metal, base metal, and/or HAZ when required.
6. For nontubular applications, whether the structure is statically or cyclically loaded.
Which welded joints are loaded in tension.

All additional requirements that are not specifically addressed in the code.

For OEM applications, the responsibilities of the parties involved.

1.5.2 Contractor’s Responsibilities. The Contractor shall be responsible for WPSs, qualification of welding personnel, the Contractor’s inspection, and performing work in conformance with the requirements of this code and contract documents.

1.5.3 Inspector’s Responsibilities

1.5.3.1 Contractor Inspection. Contractor inspection shall be supplied by the Contractor and shall be performed as necessary to ensure that materials and workmanship meet the requirements of the contract documents.

1.5.3.2 Verification Inspection. The Engineer shall determine if Verification Inspection shall be performed. Responsibilities for Verification Inspection shall be established between the Engineer and the Verification Inspector.

1.6 Approval

All references to the need for approval shall be interpreted to mean approval by the Authority Having Jurisdiction or the Engineer.

1.7 Mandatory and Nonmandatory Provisions

1.7.1 Code Terms “Shall,” “Should,” and “May.” “Shall,” “should,” and “may” have the following significance:

1.7.1.1 Shall. Code provisions that use “shall” are mandatory unless specifically modified in contract documents by the Engineer.

1.7.1.2 Should. The word “should” is used to recommend practices that are considered beneficial, but are not requirements.

1.7.1.3 May. The word “may” in a provision allows the use of optional procedures or practices that can be used as an alternative or supplement to code requirements. Those optional procedures that require the Engineer’s approval shall either be specified in the contract documents, or require the Engineer’s approval. The Contractor may use any option without the Engineer’s approval when the code does not specify that the Engineer’s approval shall be required.

1.8 Welding Symbols

Welding symbols shall be those shown in AWS A2.4, Standard Symbols for Welding, Brazing, and Nondestructive Examination. Special conditions shall be fully explained by added notes or details.
Index

A

AASHTO/AWS D1.5 specifications, 1.4, C–14.4.4
acceptance criteria
bend tests, 6.10.3.3, 9.8.3, C–6
CVS toughness testing, 6.27.7, Table 6.15
cyclically loaded nontubular connections, 8.12.2, 8.13.2, C–8.13.2, Figs. 8.2 and 8.3, Tables 8.2 and 8.3
destructive testing, 6.24.2
discontinuities, 7.14.5.1, Fig. 7.1, Table 7.4
engineer’s approval of alternate criteria, 8.8, C–8.8, Tables C–8.1 and C–10.15
FCAW-S testing, 6.28.6
fillet weld break test, 6.23.4.1, Figs. 6.25, 6.27
inspections, 8.7
macroetch test, 6.10.4.2, 6.23.2.2, 10.21.1.1, Fig. 6.25
nondestructive testing, 8.11, C–8.11 phased array ultrasonic testing, Table H.2
radiographic testing (RT), 8.12, C–8.12
reduced-section tension test, 6.10.3.5
reinforcement testing (RT), 6.10.2.2, 6.23.2.2
RT or UT, 6.10.2.2
statically loaded nontubular connections, 8.13.1, C–8.13.1, Table 8.2
stud welding, 9.4.7, 9.8.3, 9.9.9, C–9.4.7
tack welders qualification, 6.24, Fig. 6.23
ultrasonic testing, 8.13, Annex O12, C–8.13
visual acceptance criteria, 6.24.1
visual inspection, 8.9, C–8.9, Table 8.1, Table 10.15
welders and welding operator qualification, 6.23, 10.21
WPS qualification, 6.7, 6.10, 10.13, C–10.13, Figs. 6.5 to 6.10, 6.14, 10.14 and 10.15, Tables 10.9 to 10.11, C–6.10, C–10.9
aging of test specimens, performance qualification, 6.3.2
AISC Design Guide, 10.2.1, 10.5.6, Annex R, C–4.7.7, C–4.12.2.2, C–10.7.2.1
alignment
butt joints, 7.21.3, C–7.21.3, Fig. C–7.3 and C–7.4
methods, 7.21.6
allowable stresses
base metal, 4.6.3
cyclically loaded structures, 4.16, C–4.16, Figure 4.16, Table 4.3
fillet welds, 4.6.4.2, C–4.6.4.2, Fig. C–4.2
increase, 4.6.5
ranges, C–4.16.2, C–11.4.2
weld metal, 4.6.4, C–4.6.4, Fig. C–4.2, Table 4.3
Z-loss allowance, 4.4.2.6, 4.4.3.3, Table 4.2
all-weld-metal tension test, 6.10.3.6, 6.15.1.3, Fig. 6.14
American Society for Nondestructive Testing requirements, 8.14.6.1
amplitude calibration, ultrasonic testing, 8.25.6.4, 8.27.1.2, 8.27.2.4, 10.29.4, Annex O, C–8.25.6.4
angle-beam search units calibration, 8.23.4, 8.24.5, 8.27.2.1, 8.27.2.2, C–8.23.2
discontinuity size evaluation, 8.29.2 qualification, 8.23.4, 8.27.2.1, 8.27.2.2, C–8.23.4
shear wave mode, 8.27.2.2, 8.29.2 ultrasonic testing, 8.21.7, 10.29.6, Table 8.7
angle members, cyclically loaded structures, 4.15.4
ANSI/AISC 360, 10.2.1, 10.2.2
ANSI Z49.1, 1.3
architecture, web flatness and, 7.22.6.5
arc shields, stud welding, 9.2.2, 9.4.6, C–9.4.6
arc strikes, 7.28, C–7.28
artifacts, radiographic testing, 8.17.10.1, Figs. 8.4 to 8.9, Table 8.4
ASME B46.1, 7.23.3.2
ASME Boiler and Pressure Vessel Code, C–8.16.1, C–10.25
ASNT (American Society for Nondestructive Testing), 8.1.4.5, 8.14.6.1
SNT-TC-1A, 8.35.1, O3
assistant inspector, 8.1.4.4
ASTM A6, C–7.2, C–7.22.8, C–11.1
ASTM A20, C–7.2
ASTM A29/A29M, 9.2.6, 9.9.3
ASTM A36, 6.28.2, 9.6.4.1, 9.9.5.1
ASTM A109, 7.2.2.2
ASTM A325, C–4.7.7
ASTM A370, 6.10.3.6, 6.26.2, 9.3.2
ASTM A435, 7.14.5.1
ASTM A490, C–4.7.7
ASTM A500, C–Fig. 5.2
ASTM A514, 7.3.2.5, 7.8.3, 8.11, C–7.2, C–7.3.2.5, C–8.11, H9.3.5
ASTM A517, 7.3.2.5, 7.8.3, 8.11, C–7.2, C–7.3.2.5, C–8.11, H9.3.5
ASTM A572, 6.28.2
ASTM A588/A588M, 7.4.7, C–7.2
ASTM A618, C–7.2
ASTM A653, 9.9.5.1
ASTM A673, 10.7.2.1, 10.7.2.2, C–10.7.2
ASTM A709, 7.8.3, 8.11, C–8.11, H9.3.5
ASTM A710, C–5.9
ASTM A913, 6.28.2, C–5.9
ASTM E23, 6.26.2
ASTM E92, 5.7.3
ASTM E94, 8.16.1, 8.17.4
ASTM E140, 5.7.3
ASTM E164, 8.22.1, H5.7
ASTM E165, 8.14.5
ASTM E317, C–8.23.1, H14.1.2
ASTM E494, H14.4
ASTM E709, 8.14.4
ASTM E1032, 8.16.1
ASTM E1254, 8.18.4.1
backgouging, 10.14.1, Fig.10.18

backing, 7.9.1

backscatter, radiographic testing, 8.17.8.3, 8.17.8.4

backing electrodes, 7.3.2.4

bandpass filtering, phased array ultrasonic testing, Annex H3.2

base metal

allowable stresses, 4.6.3

cracks, 7.25.1.4

fabrication, 7.2, C–7.2, Table 5.3, Table 6.9

insufficient thickness, 11.5.4, C–11.5.4

mislocated holes, welded restoration, 7.25.5, C–7.25.5

notch toughness, tubular connections, 10.7.2, C–10.7.2, Table C–10.1 to C–10.4

preparation, 7.14, C–7.14

prequalified WPSs, 5.3, Tables 5.3 and 5.4

qualification, 6.8.3, C–6.8, Table 6.8 and 6.9

repair and strengthening, 11.2, C–11.2, Table C–11.1

straight-beam testing, 8.24.4

stud welding, 9.4.3, 9.5.4

thickness combination, 5.7.2, Table 5.8

through-thickness loading, 4.7.3, C–4.7.3

ultrasonic testing, 8.25, 10.29.4, C–8.25

workmanship, 11.5.1

base plates, connections and splices, 4.7.2

beams

camber, 7.22.3, 7.22.4, C–7.22.4, Fig. C–7.6, Tables 7.5 and 7.6

deepth variation, 7.22.9

straightness, 7.22.2, C–7.22.2

bearing

loading points, 7.22.10, C–7.22.10, Fig. C–7.8

stiffeners, 7.22.11.3, C–11.3

bend testing, 6.10.3.1, 6.10.3.2, 6.10.3.3, C–6.10.3.2, Figs. 6.6 to 6.13

acceptance criteria, 6.10.3.3, 9.8.3, C–6.10.3.3

RT as substitution for, 6.17.1.1

stud welding, 9.6.7.1, 9.7.1.4, 9.8.3, 9.9.7.2, C–9.7.1.4, Figs. 9.4 and 9.5

bevel groove welds, 4.4.2.7, C–Fig. 5.2, Figs. 4.2 to 4.6

bidders, information furnished to, 8.1.1, C–8.1.1

bolts, 4.7.7, C–4.7.7

break test, fillet welds, 6.23.4, Figs. 6.25, 6.27

built-up members, 4.12, C–4.12

camber in, 7.18.1, C–7.18

splices, 7.19.2

weld access holes, 7.16.1.2, Fig. 7.2

butt joints

alignment, 7.21.3, C–7.21.3,

Fig. C–7.3 and C–7.4

circumferential groove welds, 10.28.1

CJP welds, backing, 4.17.2.3, 10.14.1, C–10.14, Fig. 10.18

prequalified WPSs, 10.10.1, C–10.10.1

radiographic testing (RT), 8.16, C–8.16

single-side backing, 10.14.2, Fig.10.18

steel backing, C–8.25.12, Fig. C–8.3 and C–8.4

surface contouring, 4.7.5, C–4.7.5

T-, Y- or K-connections, 10.15, Fig. 10.16 and 10.17, Tables 10.10 and 10.11

testing, 8.25.6.2, Fig. 8.15

thickness transitions, 4.17.1.1, Fig. 4.17

transversely loaded, 4.17.5

weld tabs, 7.30.4

width transitions, 4.17.1.2, Fig. 4.18

C

calibration

angle-beam testing, 8.24.5

inspection testing, 8.24, 8.27

phased array ultrasonic testing, Annex H8

for testing, 8.24, C–8.24

ultrasonic testing, 8.21.4, 8.24, 8.27, 10.29.3

camber

beams and girders, 7.22.3, 7.22.4, C–7.22.4, Fig. C–7.6, Tables 7.5 and 7.6

built-up sections, 7.18.1, C–7.18

caulking, 7.27, C–7.27

centerline cracking, C–5.8.2.1, Fig. C–5.1

center of rotation, instantaneous, 4.6.4.3, C–4.6.4.3

certification, nondestructive testing personnel, 8.14.6.2

channels, phased array ultrasonic testing, Annex H3.3

Charpy impact testing, Annex M, Table M.3

circular-to-circular tubular connections effective lengths, 10.5.5, C–10.5.5

preliminary design, Annex R

stress categories, 10.2.3.2, C–10.2.3.2, Figs. C–10.1 and C–10.3, Table 10.3

circumferential groove welds, RT requirements, 10.28.1
cleaning
completed welds, 7.29.2
in-process, 7.29.1
cleanliness
stud welding, 9.4.1
ultrasonic testing, 8.25.3
coating, stud welding, 9.4.2
Code approved processes, prequalified WPSs, 5.5.2
code interpretations, Engineer’s responsibilities, C–1.5.1(1)
columns, straightness, 7.22.1
Complete joint penetration (CJP) groove welds
allowable stress ranges, 4.16.2, C–4.16.2
butt joints, backing, 4.17.2.3
effective size, 4.4.1.2, 10.5.3.2, Table 10.7
full-length backing, 10.22.1, C–10.22.1
partial length prohibition, 4.8.2
prequalified WPSs, 5.4.1, 10.10
prohibited joints and welds, 4.18.4
qualification requirements, 6.11, 6.21, Table 6.2(1)
T-, Y- or K-connections, 10.10.2, 10.14.4.2, 10.14.4.3, Figs. 10.7 to 10.11, 10.19 and 10.20, Table 10.7
T and corner joints, backing, 4.17.2.2
tubular connections, 10.10, 10.14, 10.18, C–10.10, C–10.14, C–10.18, Figs. 10.17, 10.20 to 10.22, Table 10.13
visual inspection, 6.10.1.1
WPS qualification, 10.13, C–10.13, Tables 10.9, C–10.9
compression members
connections and splices, 4.7.2
cyclically loaded structures, 8.12.2.2, Fig. 8.3
intermittent weld, maximum spacing, 4.12.2.2, C–4.12.2.2
concavity, repairs, 7.25.1.2
concentrically loaded weld groups, 4.6.4.4, C–4.6.4.4, Table 4.4
construction aid welding, 7.17
consumables
fabrication, 7.3, C–7.3
verification test, 6.13.3, Fig. 6.18
contract documents
inspection stipulations, 8.1.2.2, C–8.1.2.2
plans and specifications, 4.3
contractor
inspection obligations, 1.5.3.1, 8.1.2.1, 8.6
nondestructive testing responsibilities, 8.6.4, 8.6.5
qualification responsibilities, 6.2.1.1, 6.2.2.2, C–6.2.1.1
radiographic testing equipment provision, 8.18.1, C–8.18.1
repairs, 7.25.1, C–7.25.1
responsibilities of, 1.5.2, 8.6.1, C–1.5.2, C–8.6.1
shrinkage or distortion responsibilities, 7.20.3
stud welding requirements, 9.3.3
testing responsibilities, 9.6.3
WPS preparation, 6.7
convexity, 7.25.1.1
cooling rates, 4.13.3, 8.1.13.3, Figs. 4.13.3, B.2, B.3
couplants
phased array ultrasonic testing, Annex H5.6
ultrasonic testing, 8.25.3, C–8.25.4
welds, 7.30.3
cracks, weld or base metal, 7.25.1.4
cratering, repairs, 7.25.1.2
crushed slag, fabrication, 7.3.3.4, C–7.3.3.4
cumulative damage, cyclically loaded tubular structures, 10.2.3.4
cutting equipment, 7.10
thermal cutting process, 7.14.8
CVN toughness testing
acceptance criteria, 6.27.7, Table 6.15
FCAW-S testing, 6.28.5, Figs. 6.31–6.32
general requirements, 6.26, C–6.26, Figs. 6.5 to 6.7, Tables 6.1 to 6.2, and 6.5 and 6.7
locations, 6.27.1, Fig. 6.28
notch location, 6.27.4, Fig. 6.28
number of specimens, 6.27.2, C–6.27.2
reporting requirements, 6.29
retesting, 6.27.8
specimen size, 6.27.3, Table 6.14
sub-size specimens, 6.27.6, Table 6.15
test temperature, 6.27.5, Table 6.14
tubular connections, 10.7.2.1, 10.14.4.4, C–10.7.2.1, C–10.14.4.4
cyclically loaded structures
allowable stresses and stress ranges, 4.16.2, C–4.16.2, C–11.4.2
backing, 7.9.1, C–7.9.1, Table 4.5
code provisions, nontubular structures, C–1.5.1(6)
in compression, 8.12.2.2, Fig. 8.3
detailing, fabrication and erection, 4.17
discontinuities, acceptance criteria, 8.12.2, C–8.12.2.1, Fig. C–8.19, Figs. 8.2 and 8.3
general requirements, 4.13, C–4.13
girder web flatness, Annex F
inspection, 4.19
limitations, 4.14, C–4.14
material trimming, 7.14.7
prohibited joints and welds, 4.18
splices, 7.19.1.2
stress calculations, 4.15, 10.2.3.1, 10.2.3.2, 10.2.3.3, C–10.2.3.2, C–10.2.3.3, Figs. 10.1, 10.1, C–10.3, Tables 10.1 and 10.3
in tension, 8.12.2.1, Fig. 8.2
tubular connections, 10.2.3, C–10.2.3
ultrasonic testing, acceptance criteria, 8.13.2, C–8.13.2, Tables 8.2 and 8.3
web flatness, 7.22.6.3
weld tabs, 7.30.3

D

dB accuracy
Annex P nomograph, 8.28.2.4
decibel equation, 8.28.2.2
inspection, 8.31
qualification procedures, 8.28.2
dead elements, phased array ultrasonic testing, Annex H3.4
decibel equation, 8.28.2.2
definitions, 3
depth variation, beams and girders, 7.22.9
design requirements
conformance, 7.12, C–7.12, Table 8.1
inspection, 8.31
strengthening and repair, 11.3, C–11.3
tubular connections, 10.2, 10.5, Table 10.1
welded connections
contract plans and specifications, 4.3, C–4.3
scope, 4.1
destructive testing, acceptance criteria, 6.24.2, Fig. 6.23
detailing, cyclically loaded structures, 4.17, C–4.17
Gain control, UT instrument qualification, 8.21.4, 8.23.2, 8.27.1.5, C–8.23.2

Gas Metal Arc Welding (GMAW) electrodes, 7.3.4, C–Table 5.1 power sources, 5.5.4, C–5.5.4 prequalified WPSs, 5.5.1, C–5.5.1, Table C–5.1 qualification, 6.8, 6.15.1, C–6.8, Table 6.5, Table 6.7 root pass, 5.5.5 shielding gases, 5.6.3, Table 5.7 SMAW joints, 5.4.1.2, 5.4.2.4 Gas Metal Arc Welding-S (GMAW-S) CJP groove joints, 10.10.2.1 metal transfer, C–5.5.1, Fig. C–5.3 Gas Tungsten Arc Welding (GTAW), qualification, 6.8, 6.15.1, 6.15.1.2, C–6.8, Table 6.5, Table 6.7 geometric unsharpness, radiographic testing, 8.17.5.1, C–8.17.5.1 girder web flatness, Annexes E, F girth weld alignment, 10.23.1 gouges grooves, 27.1.5, Figs. 5.1–5.2 limitations, 7.14.8.4 groove welds. See also CJP groove welds, flare-groove welds, PJP groove welds dimensions, 7.21.4, 10.23.2, Table 10.14 double-sided groove preparation, 5.4.1.4 effective areas, 4.4, 10.5.3 flat position, 4.18.2 gouged grooves, 7.21.5 joint configuration, 4.8, 5.4.1, C–4.8, Fig. 4.8, Fig. 5.1 longitudinal, 4.17.2.4 one-sided, 4.18.1 profiles, 7.25.3, Fig. 7.4, Tables 7.8 and 7.9 radiographic testing (RT), 8.16, C–8.16 single-pass, filler metals, 5.6.2.1, Table 5.4 ultrasonic testing (UT), 8.19, C–8.19 unreinforced bevel groove weld, 4.4.2.7, Fig. 4.2 visual inspection, 6.10.1.1, Fig. 7.4 ground welds, discontinuities, 8.30.2.1 guided bend test jig, 6.10.3.1, Fig. 6.11 to 6.13 stress-relief requirements, 7.8, Table 7.2 high current testing, stud welds, 9.9.6.1 holes fillet welds, 4.4.4, 4.9.4 IQI requirements, 8.17.1, 10.27.1, Figs. 8.4 to 8.9, Tables 8.4 and 10.16 mislocated holes, welded restoration, 7.25.5, C–7.25.5 weld access holes, 4.7.6, C–4.7.6 horizontal linearity instrument qualification, 8.23.1, 8.27.1.4, 8.28.1, C–8.23.1 ultrasonic testing, 8.21.1, Annex G3 horizontal sweep, 8.24.5.1, Annex H, C–8.24.5.1, C–Annex H hydrogen control, preheat requirements, Annex B, Table B.1 Hydrogen Induced Cracking (HIC), C–7.3.2.1 identification mark, radiographic testing, 8.17.12, C–8.17.12 image enhancement, radiation imaging systems, 8.35.3 immediate retest, 6.25.1.1 inaccessibility, ultrasonic testing, 8.25.5.2, C–8.25.5.2, Table 8.7, Table C–8.7 indication rating, ultrasonic testing, 8.25.6.5, C–8.25.6.5 information aces for bidders, 8.1.1, C–8.1.1 nondestructive testing personnel, 8.15.4 inspection acceptance criteria, 8.7 advanced ultrasonic systems, 8.34 calibration for testing, 8.24, 8.27, C–8.24 contract documents, 4.3.5.6, 8.1.2 contractors’ responsibilities, 8.6, C–8.6 cyclically loaded structures, 4.19 dB accuracy certification, 8.31 discontinuity size evaluation, 8.29 Engineer’s approval, alternate acceptance criteria, 8.8, C–8.8, Tables C–8.1 and C–10.15 equipment qualification, 8.23, 8.28, C–8.23 extent of testing, 8.15, C–8.15 image enhancement, 8.35.3 incomplete, reporting requirements, 10.29.8.3 materials and equipment, 8.2, C–8.2
INDEX

nondestructive testing, 8.11, 8.14, 8.15, 8.32, C–8.11, C–8.14, C–8.15
penetrant/particle testing, 8.10
personnel qualification, 8.35.2
prior inspection reports, 8.26.2
procedure qualification, 8.35.1
qualification requirements, 8.20
radiation imaging systems, 8.33, 8.35.4
radiographic testing (RT), 8.12, 8.16, 8.17, 8.18, C–8.12, C–8.17, C–8.18
records, radiation imaging, 8.35.4
reference standards, 8.22, C–8.22
report preparation and disposition, 8.26
scanning patterns, 8.30, Fig. 8.15
scope, 8.1, C–8.1
scanning patterns, 8.30, Fig. 8.15
identification of inspections performed, 8.5, C–8.5
of welder, welding operator and tack welder qualifications, 8.4, C–8.4
work and records, 8.5, C–8.5
of WPSs, 8.3, C–8.3
inspector assistant, 8.1.4.4
categories, 8.1.3, C–8.13
contractor inspection by, 1.5.3.1
contractor’s inspector, 8.1.3.1
identification of inspections performed, 8.5.4, C–8.5.4
items furnished to, 8.1.6, C–8.1.6
qualifications, 8.1.4, C–8.1.4.3
requests from, 8.6.2
responsibilities of, 1.5.3, 8.1.4.8, C–1.5.3, C–8.1.5
verification inspection, 1.5.3.2, 8.1.3.2
instantaneous center of rotation, 4.6.4.3, C–4.6.4.3
instrument requirements, ultrasonic testing, 8.21.3
intermediate stiffeners, 7.22.11.1, 7.22.11.2
intermittent welds
fillet welds, 4.9.5, 7.23.2
maximum spacing, 4.12.2
PJP groove welds, 4.8.3
internal reflections, ultrasonic testing, 8.21.7.5, 8.28.3
International Institute of Welding (IIW) reference block
calibration of UT unit, 8.27
ultrasonic testing, 8.21.7.7, 8.22.1, Annex G, C–8.22.1, Fig. 8.12, Fig. 8.13, Fig. C–8.13
interpass temperature requirements
fabrication, 7.6
prequalified WPSs, 5.7, C–5.7
qualification, 6.8.4, Table 5.8
restraint levels, Annex B6.2.4, Table B.2
IQI requirements
digital image sensitivity, 8.17.11.2, C–8.17.11.2
hole-type requirements, 8.17.1, 10.27.1, Figs. 8.4 to 8.9, Table 8.4, Table 10.16
radiation imaging systems, 8.33.2
radiographic testing, 8.17.7, 10.27.2, C–8.17.7, C–10.27.2 Table 10.18
selection and placement, 8.17.7, C–8.17.7, Figs. 8.4 to 8.9, Table 8.6
single- and double-wall exposures, 10.28.1.2, 10.28.1.3, Figs. 10.26 to 10.29
wire requirements, 8.17.1, 10.27.1, Figs. 8.4 to 8.9, Tables 8.5 and 10.17
J
J-groove preparation, 5.4.1.4, 5.4.1.9, 5.4.2.8
joint configuration, 4.7, C–4.7. See also specific joints
fillet welds, 4.9, C–4.9
groove welds, 4.8, C–4.8, Fig. 4.8
plug and slot welds, 4.10
preparation, 7.14.6, C–7.14.6
prequalified WPSs, 5.4, C–5.4
prohibited joints and welds, 4.18
T-, Y- or K-tubular connections, 10.5.2.2, 10.5.3.1, 10.5.3.2, Table 10.5
tolerance of dimensions, 7.21, 10.23, C–7.21, C–10.23
tubular connections, 10.18.1, Figs. 10.21 and 10.22
lap joints
configuration, 4.9, Fig. 4.9
maximum weld size, 4.4.2.9, Fig. 4.7
prequalified WPSs, 10.8.1, Figs. 10.3, 10.5
tension, 4.9.3.2, C–4.9.3.2, Fig. 4.11
tubular connections, 10.5.2.3, Fig. 10.3
linear reference comparators, radiographic testing, 8.17.14, C–8.17.14
loading points
bearing, 7.22.10, C–7.22.10, Figs. C–7.8
deformation, C–4.6.4.2, C–4.6.4.3, Figs. C–4.3 to C–4.6
strengthening and repair, 11.3.5, C–11.3.5
Local Brittle Zones (LBZ), C–10.14.4.4
longitudinal ultrasonic testing
discontinuity size evaluation, 8.29.1
scanning patterns, 8.30.1
straight-beam search units, 8.21.6, C–8.12.6
unit calibration, 8.27.1
longitudinal welds
bend specimen testing, 6.10.3.2, C–6.10.3.2
fillet welds, 4.9.1.2, 4.9.2, C–4.9.1.2, Fig. 4.10
low current testing, stud welds, 9.9.6.6
low cycle fatigue, C–14.4.2
Lowest Anticipated Service Temperature (LAST), tubular connections, 10.7.2.2, 10.14.4.4, C–10.7.2.2, C–10.14.4.4, Table C–10.5 and C–10.6
low-hydrogen electrodes
ASTM A514 or A517 steels, restrictions, 7.3.2.5, C–7.3.2.5
storage conditions, 7.3.2.1, C–7.3.2.1
macroetch test, 6.10.4, Fig. 6.25
acceptance criteria, 6.10.4.2, 6.23.2.2, 10.21.1.1, Fig. 6.25
flare-groove welds, 6.12.4.2, Fig. 6.29
PJP qualification, 6.12.2.2, Fig. 6.29
plug and fillet welds, 6.23.2.1, Figs. 6.25 to 6.26
T-, Y- or K-connections, 10.21.1, Figs. 10.21 to 10.22
welders and welding operators qualification, 6.23.2
magnetic particle testing (MT), 8.10
manufacturers
stud welding base qualification requirements, 9.9
stud welding ID, 9.2.1.1
matched box connections, 10.9.1.1, Fig. 10.21.1.1, Fig. 6.25 to 10.22
welders and welding operators qualification, 6.23.2
materials
inspection of, 8.2, C–8.2
stud welding, 9.5.5.2, 9.9.5.1, Figs. 10.5 to 10.7
stud welding ID, 9.2.1.1
matched box connections, 10.9.1.1, Figs. 10.5 to 10.7
stainless steel, 9.2.1.1, Figs. 10.5 to 10.7
trimming, 7.14.7
tubular connections, 10.7, C–10.7, Figs. C–10.3 and C–10.4
production positions, 10.12, 10.16, C–10.16, Tables 10.8 and 10.12, C–10.12
postweld heat treatment (PWHT) alternative, 7.8.2
prequalified WPSs, 5.9, C–5.9
steels not recommended for, 7.8.3
power
non-waveform-controlled sources, 6.9.1
total instantaneous power, 6.8.5.3
practice, retesting after, 6.25.1.2
preheat temperature requirements alternative methods, Annex B, C–Annex B
ESW/ESG processes, 7.4.5
minimum preheat, Annex B6.2.4, Table B.2
prequalified WPSs, 5.7, C–5.7
qualification, 6.8.4, Table 5.8
stud welding, 9.5.5.7
pre-production testing, 9.7.1
Prequalification of WPSs. See also Qualification
base metals, 5.3, Tables 5.3
butt joints, 10.10.1, C–10.10.1
CJP groove welds, 5.4.1, 10.10–5.4, C–10.10, Figs. 5.1 and 5.5
contents, Annex K
essential variables for, 5.2.1, C–Table 5.2
filler metal and shielding gas, 5.6, Table 5.4 Tables 5.6 and 5.7
fillet weld requirements, 5.4.3, 10.8, Figs. 5.3, 10.3, 10.5, Table 7.7
general WPS requirements, 5.2, 5.8, C–5.8, C–Table 5.2, Fig. 5.6, Table 5.8, Tables 5.1 and 5.2
inspection of, 8.3.1
limitation of variables, 5.8.2, Table 5.1
postweld heat treatment, 5.9, C–5.9
preheat and interpass temperature requirements, 5.7, C–5.7, Table 5.8
sample forms, Annex J
scope, 5.1, C–5.1, C–Table 5.1
stud welds, 9.6.1, Table 5.3
welding processes, 5.5
weld joints, 5.4, Figs. 5.1 to 5.5, Table 5.5
prequalified joints
detail dimensions, C–4.3.5.4
drawing, 4.3.5.4
plug and slot welds, 4.10.3
procedure qualification record (PWR), WPS preparation, 6.7, 6.8.2, Tables 6.6, 6.7
production control, stud welding, 9.5.5.1, 9.7, C–9.7
profile accuracy, 7.14.8.2
QC1 requirements, exemption from, 8.14.6.3
Qualification
aging of test specimens, 6.3.2
assistant inspector, 8.1.4.5
CJP groove welds, 6.21, Fig. C–6.1, Table 6.10
common requirements, WPS and Welding Personnel Performance, 6.3
CVN toughness testing, 6.2.1.3, 6.26, 6.27, C–6.26, C–6.27
equipment, 8.23, 8.28, C–8.23
essential variables, 6.8, 6.20, C–6.8, C–6.20, Fig. C–6.1, Table 6.12, Tables 6.7, 6.8
existing non-waveform or waveform WPSs, 6.9
FCAW-S testing, 6.28
fillet weld specifications, 6.13, 6.22.2, C–6.13, Fig. 6.22, Table 6.4
forms preparation, 6.19
general requirements, 6.2
groove weld specifications, 6.11
inspection of, 8.4, C–8.4
inspection personnel, 8.1.4, C–8.1.4.3
lapse of, retesting after, 6.25.1.3
manufacturers’ stud welding base qualification requirements, 9.9
nondestructive testing, 8.35
nondestructive testing personnel, 8.14.2, 8.17, C–8.17, Figs. 8.4 to 8.9
retesting, 6.25.1.1
sources, C–8.17.6
substitution for guided bend tests, 6.17.1.1
tubular structures, 10.27, 10.28, C–10.27, Figs. 8.4 and 8.5, Tables 10.16 and 10.17
variations in, 8.16.2, C–8.16.2
welders and welding operators qualification, 6.23.3.1, 10.21.2
WPS qualification, 6.10.2.1
range. See distance calibration records
of inspection, maintenance of, 8.5.5
inspection of, 8.5, C–8.5
performance test results, 6.3.3
phased array ultrasonic testing, Annex H13
radiation imaging systems, 8.35.4
radiographic film/image archive, 8.18.4
radiographic film/image retention, 8.18.3, C–8.18.3
restraint, minimization, 7.20.5, restoration, for strengthening and repair, resolution requirements, ultrasonic replacement, for strengthening and repair, reference standards alternative ultrasonic testing, Annex O CVN toughness testing, 6.26.2, 6.26.3, C–6.26, C–6.26.3 documents, Annex S inspection, 8.22, C–8.22 measurement units, 1.2 ultrasonic testing calibration, 8.27, Annex G WPSs qualification, 6.2.1.2 zero reference level, 8.24.5.2 reflector size, ultrasonic testing, 8.25.5.1, 10.26.1.1, C–8.25.5.1, Fig. 10.24 reinforcement, 7.25.1.1, 8.17.3, C–8.17.3 reject control calibration, 8.24.1 rejected discontinuities, 8.25.8, 8.25.9, Annex O12, C–8.25.8, Tables 8.2 and 8.3 repairs, 7.25, C–7.25 base metal, 11.2, C–11.2 contractor options, 7.25.1, C–7.25.1 design for, 11.3, C–11.3 existing structures, 11.1 to 11.6, C–11.1 to C–11.6 fillet welded studs, 9.5.5.9 removal area, 9.7.5 stud welds, 9.7.3, 9.7.5 ultrasonic testing and, 8.25.10 weld discontinuities, 7.4.6, 7.14.5.2, C–7.14.5.2, Table 7.4 replacement for, strengthening and repair, 8.3.4 reporting requirements completed reports, 8.26.3 content, 8.26.1 CVN toughness testing, 6.29 inspections, 8.26 phased array ultrasonic testing, Annex H13 preparation and disposition of reports, 8.26 prior inspection reports, 8.26.2 radiographic testing, 8.18.2 retest reports, 8.25.11 specification writing guide, Annex N ultrasonic testing, 10.29.8, Annex O13 resolution requirements, ultrasonic testing, 8.22.3, 8.27.1.3, 8.27.2.5, C–8.25.12, Fig. 8.14 restoration, for strengthening and repair, 8.13.4 restraint, minimization, 7.20.5, C–Annex B retesting, 6.10.5, 6.25 CVN toughness testing, 6.27.8 qualification expiration, 8.4.3, C–8.4.3 reports, 8.25.11 stud welds, 9.9.8 tack welders, 6.25.2, C–8.4.2 welder and welding operators, 6.25.1, C–8.4.2 rivets, 4.7.7, C–4.7.7 rolled sections, weld access holes, 7.16.1.1 rolling directions, qualification testing, C–6.5 root openings correction, 7.21.4.2, C–7.21.4.2 mechanical testing, 6.10.3.1, Fig. 6.8, C–6.9 prequalified WPSs, 5.4.1.7, 5.4.2.6 root pass, 5.5.5, Table C–5.1 toughness requirements, 7.14.8.3, C–7.14.8.3 rust, 7.14.3, C–7.14.3

S

Safety and health, Structural Welding Code - Steel, safety precautions, 1.3 safety requirements, radiographic testing (RT), 8.17.2 scale, 7.14.3, C–7.14.3 scanning patterns, 8.25.6.1, 8.30, 10.29.5, Figs. 8.15, 10.30, Table 8.7 phased array ultrasonic testing, Annex H ultrasonic testing, Annex O seal welded steel backing, C–8.25.12, Fig. C–8.5 and C–8.6 sensitivity base metal straight-beam testing, 8.24.4.1, C–8.24.4.1 calibration, 8.27.2.4, 10.29.3.2 sequencing of welds, 7.20.2, 11.5.6, C–7.20.2, C–11.5.6 shear wave mode, ultrasonic testing, 8.27.2 shelf bars base metal, 7.2.2.2 profiles, 7.23.4 Shielded Metal Arc Welding (SMAW) CJP groove joints, 10.10.2.1 electrodes, 7.3.2, C–7.3.2 filler metals, 5.6, Table 5.4 joint preparation, GMAW/FCAW, 5.4.1.5, Table 5.4 prequalified WPSs, 5.5.1, C–5.5.1 qualification, 6.8, C–6.8, Table 6.5, C–6.8, Table 6.7 temperature-moisture content charts, Annex D, Figs. D.1 and D.2 shielding gas composition requirements, Annex M, Table M.5 electrodes, 5.6.3, 7.3.1.3, C–7.3.1.3 prequalified WPSs, 5.6.3, C–5.6, Table 5.7 shop drawing requirements, 4.3.5 shop splices, 7.19.1.1 shrinkage, control, 7.20, C–7.20 side bends, mechanical testing, 6.10.3.1, Fig. 6.8, 6.9, Figs. 6.11 to 6.13 skewed T-joints. See also T-joints drawing, 4.3.5.2 fillet welds, effective throats, Annex A measurements, 4.4.3, Fig. 5.4 prequalified WPSs, 5.4.3.2, 5.4.3.3, 5.4.3.4, Fig. 5.4, Table 7.7. slag inclusion, 7.25.1.3 slot welds effective area measurements, 4.4.5 fabrication, 7.24.2 fillet welds as, 4.9.4 joint configuration, 4.10 minimum spacing, 4.10.2 prequalified WPSs, 5.4.4 qualification requirements, 6.22.3, Fig. 6.26, Figs. 6.26, Figs. 6.26, Figs. 6.26, 6.10 source-to-subject distance, radiographic testing, 8.17.5.2, 8.17.5.3, C–8.17.5.2 spacers, 7.2.2.3 spacing requirements, stud welding, 9.4.5 specific welding requirements, contract plans, 4.3.3 specimen preparation manufacturers’ stud welding base qualification requirements, 9.9.5 stud weld testing, 9.6.4 splices built-up members, 7.19.2 cyclically loaded, 7.19.1.2 shop locations, 7.19.1.1 subassembly, 7.19.1 thick filler plates, 4.11.2, Fig. 4.15 thin filler plates, 4.11.1, Fig. 4.14 statically loaded structures code provisions, nontubular structures, C–1.5.1(6) girders and flatness, Annex E, C–7.22.6.1, Fig. C–7.5 nontubular structures backing, 7.9.1.5 built-up members, 4.12 discontinuities, 8.12.1, C–8.12.1, Fig. 8.1, Figs. C–8.7 and C–8.8 filler plates, 4.11
fillet weld joint configuration, 4.9, C–4.9
general requirements, 4.5
groove weld joint configuration, 4.8, C–4.8
joint configuration, 4.7
plug and slot weld, joint configuration, 4.10
stresses, 4.6
thickness transition, 4.7.5, 4.8.1, C–4.8.1, Fig. 4.8
ultrasonic testing, 8.13.1, C–8.13.1, Table 8.2
web flatness, 7.22.6.2, C–7.22.6.2
tubular structures, 10.2.1, C–10.2.1
zone classification, Annex B5.1, C–B5.1
tack weld incorporation, 7.17.5
surface contouring, 4.17.3
fillet welds, 4.7.5, C–4.7.5
stud welding, 9.5.5.3
susceptibility index, hydrogen control, Annex B6.2.3, Table B.1
sweep base metal straight-beam testing, 8.24.4.1, C–8.24.4.1
temperature welds, 7.22.5
horizontal, 8.24.5.1, Annex H, C–8.24.5.1, C–Annex H
symmetrical cross sections, cyclically loaded structures, 4.15.3

T-, Y- or K-connections
backing or backgouging, 10.14.3, Fig. 10.18
CJP groove welds, 10.14.4.2, 10.14.4.3, 10.18, C–10.18, Figs. 10.7 to 10.11, 10.17, 10.19 to 10.22
fatigue improvement, 10.2.3.6, C–10.2.3.6, Fig. C–10.2
fillet welds, 10.15, Fig. 10.16, Tables 10.10 and 10.11
macrotech test, 10.21.1, Figs. 10.21 to 10.22
material limitations, 10.7.1, C–10.7.1
PJPs, 10.15, Fig. 10.16, Tables 10.10 and 10.11
prequalified details, 10.5.2.2, 10.5.3.1, 10.5.3.2, Table 10.5
requirements, 10.10.2, Figs. 10.7 to 10.11, Tables 10.6 and 10.7
tolerance of joint dimensions, 10.23.2.1, Table 10.14
ultrasonic Class X testing, 10.26.1.2, Figs. 10.26.1.2
subassembly splices, 7.19.1
Submerged Arc Welding (SAW)
cooling rates, fillet welds, Annex B.3.3, B6.1.3, Figs. B.2, B.3
electrodes, 7.3.3
fillet metals, 5.6, Table 5.4
heat treatment, 7.8, C–7.8
Table 7.2
PJPs and fillet welds, 10.5.4, Table 10.2
stiffeners, transverse welds, 4.9.3.4,
strengthening procedures, existing
straight-beam search units
Structural Welding Code - Steel
allowable stress ranges, 4.16.2, C–4.16.2, C–11.5.2
pressure vessel fabrication, 6.8, C–6.8, Table 6.5, C–6.5
allowable defect levels, 4.16.1, Table 4.5
welding, 9.5.5.3
susceptibility index, hydrogen control, Annex B6.2.3, Table B.1
sweep base metal straight-beam testing, 8.24.4.1, C–8.24.4.1
beams and girders, 7.22.5
horizontal, 8.24.5.1, Annex H, C–8.24.5.1, C–Annex H
symmetrical cross sections, cyclically loaded structures, 4.15.3

INDEX
performance qualification, 6.2.3.2, 6.16.1.2, 6.16.2.2, 10.16.2
required qualification tests, 6.17.2
retesting requirements, 6.25.2
SAW incorporation of, 7.17.5
stud welds, 9.5.5.5
testing methods and acceptance criteria, 6.24, Fig. 6.23
temperature requirements
CVN toughness testing, 6.27.5, Table 6.14
heat repair temperature limitations, 7.25.2, C–7.25.2
Lowest Anticipated Service Temperature (LAST), 10.7.2.2, 10.14.4.4, C–10.7.2.2, C–10.14.4.4, Table C–10.5 and C–10.6
minimum ambient temperature, 7.11.2, C–7.11.2, C–11.3
prequalified WPSs, 5.7, C–5.7
shrinkage or distortion, 7.20.6
stud welding, 9.4.4
temperature-moisture content charts, Annex D, Figs. D.1 and D.2
tensile strength, reduced-section tension specimens, 6.10.3.4, Fig. 6.10
tension testing
AWS A5.36/A5.36M requirements, Annex M, Table M.2
loaded plate elements, allowable stress ranges, 4.16.2, C–4.16.2, C–11.5.2
stud welding, 9.3.2, 9.6.7.3, 9.9.7.1, Fig. 9.2
term of effectiveness, inspectors, 8.1.4.7
testing methods. See also specific testing methods
atmospheric exposure time periods, 7.3.2.3, Table 7.1
atmospheric testing, 6.13.3, 6.18
electrode atmospheric time periods, 7.3.2.3, Table 7.1
fillet welds, 6.13.2, Fig. 6.15, Fig. 10.16, Table 6.4
Flux Cored Arc Welding-S (FCAW-S), 6.28
macroetch test, 6.10.4, Fig. 6.25
magnetic particle testing, 8.10
manufacturers’ stud welding base qualification requirements, 9.9
mechanical testing, 6.10.3
nondestructive testing, 6.10.2
penetrant testing, 8.10
pre-production testing, 9.7.1
procedures, 8.25, C–8.25
qualification tests, 6.17, 10.13, C–10.13, Table C–10.9
quality control tests, 9.3.4
retesting, 6.10.5
specimen preparation, 9.6.4
stud welding, 9.3.2, 9.6.2, 9.6.3, 9.8.2, C–9.6.2, Fig. 9.2
tack welders, 6.24, Fig. 6.23
torque test, 9.6.6.2, 9.7.1.3, Fig. 9.3
welders and welding operator qualification, 6.23, 10.21
welds, 8.25.6, C–8.25.6, Tables 8.2, 8.3 and 8.7
weld-through-deck stud specimens, 9.9.7.3
WPS qualification, 6.2.1, 6.5, 6.7, 6.10, 6.13.3.4, Figs. 6.16 to 6.18
FCAW-S testing, 6.28.2, 6.28.3, 6.28.4, Fig. 6.30
fillet welds, 6.3.4, C–6.3.4, Fig. 6.4
groove welds, 6.3.4, C–6–3.4, Fig. 6.3
test plate weld consumables verification test, 6.13.3.2, 6.13.3.3, Figs. 6.16 to 6.18
ultrasonic testing, 8.21.7.1, 8.21.7.2, 8.22, 8.27, 8.28, C–8.21.7.2, C–8.22, Figs. 8.11, 8.16
transitions, radiographic testing, 10.17.1.2, C–10.17.1.2
transitions of thickness or widths
backing, 7.9.1.3, C–7.9.1.2
butt joints, 4.17.1.1, Fig. 4.17
stiffeners, 4.9.3.4, C–4.9.3.4, Fig. 4.8
tongue connections, 10.6, C–10.4
transverse welds
butt joints, 4.17.5
discontinuities, 8.30.2
fillet welds, 4.9.1.1, C–4.9.1.1, Fig. 4.9, Fig. C–4.7
tubular connections. See also nontubular connections
acceptance criteria, 10.21
backing, 10.22, C–10.22
CJP groove weld requirements, 10.10, 10.14, 10.18, C–10.10, C–10.14, C–10.18, Figs. 10.17, 10.19 to 10.22, Figs. 10.19 and 10.20, Tables 10.7 and 10.13
cross-sectional variations, 10.23.2.1, Table 10.14
cyclically loaded structures, 10.2.3, C–10.2.3
design criteria, 10.2
fatigue limitations, 10.2.3.7, C–10.2.3.7, Table 10.4
fillet welds, 10.8, 10.15, 10.20, Figs. 10.5, Table 10.13
identification and parts, Fig. 10.2
joint configuration, 10.18.1, Figs. 10.21 and 10.22
materials, 10.7, C–10.7, Figs. C–10.3 and C–10.4
nondestructive testing, 10.25, C–10.25
parts, 10.3, C–10.3, Fig. 10.2
PJP groove welds, 10.9, 10.15, 10.19
production welding positions, 10.12, 10.16, C–10.16, Table 10.8, C–10.12
radiographic testing, 10.27, 10.28, C–10.27, Figs. 8.4 and 8.5, Tables 10.16 and 10.17
scope, 10.1, C–10.1
stresses, 10.2.2, C–10.2.2, Table 10.2
symbols, Annex I, Fig. 10.4
632
INDEX

T-, Y-, and K-connections, 10.29, C–10.29
testing methods, 10.13, 10.21, C–10.13, Table C–10.9
tolerance of joint dimensions, 10.23, C–10.23
ultrasonic testing, 10.26, 10.29, C–10.26, C–10.29
visual inspection, 10.24, Table 10.15
weld design, 10.5
welding personnel performance
qualification, 10.11, 10.17
WPS requirements, 10.11

U-groove preparation, 5.4.1.4, 5.4.1.9, 5.4.5.8
ultrasonic testing (UT)
acceptance criteria, 6.10.2.2, 8.13
advanced systems, 8.34
angle criteria, 8.21.7, 8.25.5.2, C–8.25.5.2, Table 8.7
approach distance, search unit, 8.27.2.6
calibration, 8.24, 8.27, 10.29.3, Annex G, Annex O
class R criteria, 10.26.1.1, Fig.10.24
class X criteria, 10.26.1.2, Figs. 10.9 and 10.25
equipment, 8.21, 8.23, C–8.21, C–8.23
equipment qualification and inspection
forms, Annex P
groove welds, 8.19, C–8.19
indications, 8.13.2.1
phased array, Annex H
procedures, 8.14.3, 8.25, C–8.19.1, C–8.25
qualification requirements, 8.20, 8.23, Annex G, C–8.23
recalibration, 8.24.3
report preparation and disposition, 8.26
resolution, 8.22.3, 8.27.1.3, 8.27.2.5, Fig. 8.14
retest reports, 8.25.11
scanning patterns, 8.13.2.2, 8.25.6.1, 8.30, Fig. 8.15; Table 8.2 and 8.3, Table 8.7
standards, C–8.19.1
steel backing, 8.25.12, C–8.25.12
t-, Y- or K-connections, 10.29, C–10.29
transducer positions, 8.21.7.1, 8.21.7.2, 8.22, 8.27, 8.28, C–8.21.7.2, C–8.22, Figs. 8.11, 8.16
tubular connections, 10.26, 10.29, C–10.26, C–10.29
WPS qualification, 6.10.2.1
undersize welds, 7.25.1.2
unground welds, discontinuities, 8.30.2.2
Upper Bound Theorem, 10.7, C–10.7, Fig. C–10.3
verification inspection
Engineer’s responsibilities, C–1.5.1(3)
fillet welded studs, 9.5.5.10
procedures, 6.10.1, 6.23.1
quality control, 11.7.1
studs, 9.8.1
welds, 9.8.1
Web flatness, 7.22.6, C–7.22.6, Fig. C–7.5
flange centerlines and, 7.22.7
weld access holes
build-up sections, 7.16.1.2, Fig. 7.2
dimension, 7.16.1, C–7.16.1
heavy shapes, 7.16.3, C–7.16.3
rolled sections, 7.16.1.1
Weld bead, prequalified WPSs, 5.8.2.1, C–5.8.2.1
welding guns, 9.5.3
welding operators
CJP qualification test plates, 6.21.1, Figs. 6.16, 6.17, 6.19 to 6.21
inspection of qualifications, 8.4, C–8.4
performance qualification, 6.2.2, 6.2.3.1, 6.16, 6.18, 6.19, 10.16.1, C–6.2.2, C–6.16, Figs. 10.23, C–6.1, Table 6.10 and 6.11, Table 10.13
radiographic testing (RT), 6.23.3, 10.21.2
required qualification tests, 6.17.1, Table 16.11
retesting requirements, 6.25.1
testing methods and acceptance
criteria, 6.23, 10.21
weld types for performance
qualification, 6.18
WPS qualification, 6.16.3
welding personnel
common qualification requirements, 6.3
performance qualification, 6.2.2, 6.16, 6.18, 6.19, C–6.2.2, C–6.16
common qualification requirements, 10.11
Welding Procedure Specifications (WPSs)
acceptance criteria and testing
methods, 6.7, 6.10, 10.13, C–10.13, Figs. 6.5 to 6.10, 6.14, 10.14 and 10.15, C–6.1, Tables 10.9 to 10.11, C–6.10, C–10.9
CVN toughness testing, 6.26.1.1
development of, 5.2, Tables 5.1 and 5.2
exemption from qualification
requirements, 1.1

633
existing non-waveform or waveform WPSs, 6.9
fillet welds, 6.13, 10.13, C–10.13,
Tables 6.4 and 10.11, C–6.13, C–10.9
GMAW-S, 6.15.1.1, Table 6.5
GTAW, 6.15.1.2
inspection of, 8.3, C–8.3
maximum heat input, multi-position WPSs, 6.8.5.2
PJP qualification methods, 6.12.1,
6.12.2, 6.12.3, 10.13, C–6.12.1,
C–10.9, C–10.13, Fig. 5.2, Fig. 6.29, Tables 6.3, 6.5 and 6.6,
Tables 10.10
preparation, 6.7, Annex L, C–6.7
prequalification (See Prequalification
of WPSs)
qualification testing, 6.2.1, 6.7, 6.10,
10.13, C–6.5, C–10.9, C–10.13,
Figs. 6.5 to 6.10, 6.14, 10.14 and 10.15, C–6.1, Tables 10.9 to 10.11
qualification to other standards, 6.2.1.2
stud welds, 9.6.2, C–9.6.2
tubular structures, 10.11
variables, 7.5, C–7.5
weld types, 6.6
without prequalification, 10.14.4.1,
Figs.10.20 to 10.22
welding processes
environment, 7.11, C–7.11
equipment, 7.10
miscellaneous, 7.14.8.1
prequalified WPSs, 5.5, C–5.5
starts and stops, 7.4.4
Welding Suitability Guide, Table C–11.1
welding symbols, 1.8
contract documents, 4.3.5.3
tubular connections, Annex I, Fig. 10.4
welds
backing, 7.9.2
cleaning, 7.29, C–7.29
cracks, 7.25.1.4
inaccessibility, unacceptable welds,
7.25.4
inspection of, 8.5.1
metal, allowable stresses, 4.6.4, Table 4.3
performance qualification, types of,
6.18, 10.17
profiles, 7.23, 11.5.1, C–7.23,
C–10.2.3.7, C–11.5.1, Fig. 7.4,
10.2.3.7, Fig. C–11.2, Table 8.1,
Table 10.4, 10.15, Table C–11.2,
Tables 7.8–7.9
progression, 7.20.4
prohibited joints and welds, 4.18
size and length, 4.3.4, 8.5.1, C–4.3.4
testing, 8.25.6, C–8.25.6, Tables 8.2,
8.3 and 8.7
weld tabs
base metal, 7.2.2.1, Table 5.3, Table 6.9
fabrication, 7.30, C–7.30
radiographic testing (RT), 8.17.3.1,
C–8.17.3.1
removal, 4.8.4
weld-through-deck stud testing,
9.9.7.3
width/depth pass limitation, prequalified WPSs, 5.8.2.1, C–5.8.2.1
wind velocity, 7.11.1
wire requirements, IQI requirements,
8.17.1, 10.27.1, Figs. 8.4 to 8.9,
Tables 8.5 and 10.17
work inspection, 8.5, C–8.5

X
“X” line testing, 8.25.1

Y
“Y” line testing, 8.25.2

Z
zero reference level, ultrasonic testing,
8.24.5.2
Z-loss allowance
effective throat calculation, 4.4.2.6
prequalified PJP T-, Y-, and K-tubular connections, 10.5.3.1,
Table 10.5
skewed T-joints, 4.4.3.3, Table 4.2