Guide for the Joining of Wrought Nickel-Based Alloys
Guide for the Joining of
Wrought Nickel-Based Alloys

2nd Edition

Supersedes AWS G2.1M/G2.1:2002

Prepared by the
American Welding Society (AWS) G2 Committee on the Joining of Metals and Alloys

Under the Direction of the
AWS Technical Activities Committee

Approved by the
AWS Board of Directors

Abstract

This document describes the welding of different wrought nickel-based alloys, including solid solution and precipitation hardening alloys.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 Doral Blvd., Suite 130, Doral, FL 33166 (see Annex B). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS G2 Committee on the Joining of Metals and Alloys. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS G2 Committee on the Joining of Metals and Alloys and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS G2 Committee on the Joining of Metals and Alloys to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
Personnel

AWS G2 Committee on Joining Metals and Alloys

F. S. Babish, Chair Sandvik Materials Technology
G. Dunn, Vice Chair ExxonMobil Development Company
A. L. Diaz, Secretary American Welding Society
R. E. Avery Consultant to Nickel Institute
S. O. Luke Black & Veatch
R. C. Sutherlin ATI Wah Chang
D. J. Tillack Consultant to Nickel Institute

AWS G2C Subcommittee on Nickel Alloys

D. J. Tillack, Chair Consultant to Nickel Institute
A. L. Diaz, Secretary American Welding Society
G. Dunn ExxonMobil Development Company
W. E. Layo Midalloy
S. O. Luke Black & Veatch
S. B. Seitz Shawkim Technologies, Incorporated

Advisors to the AWS G2C Subcommittee on Nickel Alloys

R. E. Avery Consultant to Nickel Institute
C. D. Ersig Special Metals Welding Products Company
V. W. Hartmann Westinghouse Electric Company
G. L. Hoback Haynes International
F. A. Schweighardt Air Liquide Industrial US LP
Foreword

This foreword is not part of AWS G2.1M/G2.1:2012, Guide for the Joining of Wrought Nickel-Based Alloys, but is included for informational purposes only.

The American Welding Society formed the G2 Committee on the Joining of Metals and Alloys in 1992 in response to an industry demand for information on welding the metals and alloys that have not been covered by other documents and committees. This is the second edition of this document; the first was published in 2002.

Underlined text in clauses, tables, or figures indicates an editorial or technical change from the 2002 edition. A vertical line in the margin also indicates a revision from the 2002 edition.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS G2 Committee on the Joining of Metals and Alloys, American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
Table of Contents

Personnel .. v
Foreword ... vii
List of Tables .. x
List of Figures .. x

1. General Requirements ... 1
 1.1 Scope ... 1
 1.2 Units of Measure ... 1
 1.3 Safety .. 1

2. Normative References ... 1

3. Terms and Definitions ... 2

4. Introduction .. 3

5. The Solid Solution Strengthened Nickel-Based Alloys .. 3
 5.1 General Alloy Background Data .. 3
 5.2 Welding Requirements and Recommendations ... 15

6. The Precipitation-Hardenable Nickel-Based Alloys .. 44
 6.1 General Alloy Background Data ... 44
 6.2 Welding Requirements and Recommendations ... 47

Annex A (Informative)—Informative References .. 51
Annex B (Informative)—Guidelines for the Preparation of Technical Inquiries ... 53

List of AWS Documents on the Joining of Metals and Alloys ... 55
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Limiting Chemical Composition of Typical Solid Solution Nickel Alloy Composition</td>
<td>4</td>
</tr>
<tr>
<td>2 Chemical Compositions of Precipitation-Hardenable Nickel Alloys (wt %)</td>
<td>6</td>
</tr>
<tr>
<td>3 Typical Annealing Temperatures for Solid Solution Nickel Alloys</td>
<td>10</td>
</tr>
<tr>
<td>4 Liquidus/Solidus (Melting Range) Temperatures for Nickel Alloys</td>
<td>11</td>
</tr>
<tr>
<td>5 Melting Temperatures</td>
<td>15</td>
</tr>
<tr>
<td>6 Suggested Filler Metals for Solid Solution Nickel Alloys</td>
<td>17</td>
</tr>
<tr>
<td>7 Weld Metal Required for Various Joint Designs</td>
<td>21</td>
</tr>
<tr>
<td>8 Density of Nickel Alloys</td>
<td>23</td>
</tr>
<tr>
<td>9 Common Fusion Welding Processes</td>
<td>24</td>
</tr>
<tr>
<td>10 SMAW Joint Design and Welding Techniques for Welding Nickel-Based Alloys</td>
<td>25</td>
</tr>
<tr>
<td>11 Typical Parameters for SMAW Welding Process—Flat Position (Nickel Alloys)</td>
<td>26</td>
</tr>
<tr>
<td>12 Typical Welding Parameters for Shielded Metal Arc Welding of Nickel Alloys, Approximate Current Settings for Flat Position Welding</td>
<td>27</td>
</tr>
<tr>
<td>13 Typical Parameters for GTAW Welding Process—Nickel Alloys</td>
<td>30</td>
</tr>
<tr>
<td>14 Typical Parameters for GMAW Welding Process—Nickel Alloys</td>
<td>32</td>
</tr>
<tr>
<td>15 Typical Parameters for Submerged Arc Welding—Nickel Alloys</td>
<td>35</td>
</tr>
<tr>
<td>16 Metal Required for Submerged Arc Butt Welds in Plate</td>
<td>36</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 High Temperature Fabrication Issues</td>
<td>13</td>
</tr>
<tr>
<td>2 Comparison of Joint Designs Used for Steel and Nickel-Based Alloys</td>
<td>19</td>
</tr>
<tr>
<td>3 Joint Designs for Nickel-Based Alloys</td>
<td>20</td>
</tr>
<tr>
<td>4 Approximate Filler Metal Weight per Length of Weld</td>
<td>24</td>
</tr>
<tr>
<td>5 Optimum Electrode Position for Submerged Arc Circumferential Welding on Pipe</td>
<td>38</td>
</tr>
</tbody>
</table>
Guide for the Joining of Wrought Nickel-Based Alloys

1. General Requirements

1.1 Scope. This guide presents a description of wrought nickel-based alloys and the processes and procedures that can be used to join these materials. It stresses the process basics, parameters, applications, and safety considerations. Practical information has been included in the form of figures, tables, and graphs that should prove useful in determining capabilities and limitations in the joining of these materials.

1.2 Units of Measure. This standard makes use of both the International System of Units (SI) and U.S. Customary Units. The latter are shown with brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system should be used independently.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed here.

Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
(2) AWS Safety and Health Fact Sheets
(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Material Safety Data Sheets supplied by materials manufacturers
(2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

2. Normative References

The standards listed below contain provisions, which, through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

American Welding Society (AWS) standards:

AWS A2.4, Standard Symbols for Welding, Brazing, and Nondestructive Examination;
AWS A3.0M/A3.0, Standard Welding Terms and Definitions;

1 AWS standards are published by the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.