Guide for the Joining of Solid Solution Austenitic Stainless Steels
Guide for the Joining of
Solid Solution Austenitic
Stainless Steels

2nd Edition

Supersedes AWS G2.3M/G2.3:2009

Prepared by the
American Welding Society (AWS) G2 Committee on the Joining of Metals and Alloys

Under the Direction of the
AWS Technical Activities Committee

Approved by the
AWS Board of Directors

Abstract

This guide presents a description of solid solution austenitic stainless steels and the processes and procedures that can be used for the joining of these materials. This standard discusses the welding processes and welding parameters, qualifications, inspection and repair methods, cleaning, and safety considerations. Practical information has been included in the form of figures, tables, and graphs that should prove useful in determining capabilities and limitations in the joining of austenitic stainless steels.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 Doral Blvd., Suite 130, Doral, FL 33166 (see Annex F). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS G2 Committee on the Joining of Metals and Alloys. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS G2 Committee on the Joining of Metals and Alloys and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS G2 Committee on the Joining of Metals and Alloys to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 Doral Blvd., Suite 130, Doral, FL 33166.
Personnel

AWS G2 Committee on Joining Metals and Alloys

F. S. Babish, Chair Sandvik Materials Technology
G. Dunn, Vice Chair ExxonMobil Development Company
A. L. Diaz, Secretary American Welding Society
R. E. Avery Consultant to Nickel Institute
S. O. Luke Black & Veatch
R. C. Sutherlin ATI Wah Chang
D. J. Tillack Consultant to Nickel Institute

AWS G2E Subcommittee on Stainless Steel Alloys

S. O. Luke, Chair Black & Veatch
A. L. Diaz, Secretary American Welding Society
R. E. Avery Consultant to Nickel Institute
F. S. Babish Sandvik Materials Technology
R. D. Fuchs Böhler Welding Group USA, Incorporated
D. W. Haynie KobeWelding of America, Incorporated
W. E. Layo Midalloy
C. D. Ross ESAB Welding and Cutting Products
J. W. Sowards National Institute of Standards and Technology
D. J. Tillack Consultant to Nickel Institute
M. D. Yaple Böhler Welding Group USA, Incorporated

Advisor to AWS G2E Subcommittee on Stainless Steel Alloys

H. W. Record Böhler Welding Group USA, Incorporated
Table of Contents

Personnel ... v
Foreword ... vii
List of Tables ... xi
List of Figures .. xii

1. **General Requirements** .. 1
 - 1.1 Scope ... 1
 - 1.2 Units of Measure ... 1
 - 1.3 Safety ... 1

2. **Normative References** .. 1

3. **Terms and Definitions** .. 2

4. **General Information** .. 4
 - 4.1 History ... 4
 - 4.2 Properties .. 8
 - 4.3 Product Forms .. 8
 - 4.4 Specifications .. 8

5. **Metallurgy** .. 15
 - 5.1 Ferrite Discussion .. 15
 - 5.2 The Ferrite-Sigma Phase Relationship .. 21
 - 5.3 Corrosion Resistance Related to Welding ... 21
 - 5.4 Heat Tint .. 23
 - 5.5 Elevated Temperature Performance ... 24

6. **Welding and Fabrication Considerations** ... 26
 - 6.1 Weld Joint Design ... 26
 - 6.2 Cleaning Prior to Welding .. 27
 - 6.3 Thermal Arc Gouging and/or Grinding .. 28
 - 6.4 Distortion Control .. 29
 - 6.5 Welding Preheat and Maximum Interpass Temperature .. 29
 - 6.6 Welding Position ... 30
 - 6.7 Root Pass Welding .. 30
 - 6.8 Shielding Gas and Cleanliness ... 33
 - 6.9 Fixtures and Fitting Devices ... 33

7. **Weldability Considerations** .. 33
 - 7.1 Solidification Cracking ... 33
 - 7.2 Mitigation of Solidification Cracking with Ferrite Control .. 33
 - 7.3 Various Effects of Sulfur .. 34
 - 7.4 Reheat Cracking in Type 347-SS ... 34
 - 7.5 Other Forms of Weld Cracking and Prevention Strategies .. 34
 - 7.6 Welding Techniques to Minimize Weld Cracking ... 35

8. **Welding Processes** ... 35
 - 8.1 Shielded Metal Arc Welding (SMAW) ... 35
 - 8.2 Gas Tungsten Arc Welding (GTAW) ... 40
 - 8.3 Gas Metal Arc Welding (GMAW) ... 48
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The Chemical Composition Limits of Common Wrought Austenitic Stainless Steel Base Materials</td>
</tr>
<tr>
<td>4.2</td>
<td>The Chemical Composition Limits of Common Cast Austenitic Stainless Steel Base Materials</td>
</tr>
<tr>
<td>4.3</td>
<td>Mechanical Properties of Wrought Annealed Stainless Steel Alloys</td>
</tr>
<tr>
<td>4.4</td>
<td>Minimum Mechanical Properties of Common Cast Austenitic Stainless Steel Base Materials</td>
</tr>
<tr>
<td>4.5</td>
<td>Typical Physical Property Comparisons of Austenitic Stainless Steels versus Carbon Steels</td>
</tr>
<tr>
<td>6.1</td>
<td>Purging Guidelines for Piping</td>
</tr>
<tr>
<td>8.1</td>
<td>Suggested Welding Parameters, Manual GTAW</td>
</tr>
<tr>
<td>8.2</td>
<td>SMAW Electrodes (AWS A5.4/A5.4M) (specified tensile properties)</td>
</tr>
<tr>
<td>8.3</td>
<td>SMAW Electrodes: Welding Current, Position of Welding, and Operating Characteristics</td>
</tr>
<tr>
<td>8.4</td>
<td>SMAW Electrodes: Suggested Amperage Ranges for E3xx-15, -16, and -17 Type Electrodes</td>
</tr>
<tr>
<td>8.5</td>
<td>GTAW (TIG) Shielding Gas Selection</td>
</tr>
<tr>
<td>8.6</td>
<td>Chemical Analysis of Stainless Steel SMAW Electrodes</td>
</tr>
<tr>
<td>8.7</td>
<td>Nickel-Based SMAW Electrodes, Specified Tensile Properties</td>
</tr>
<tr>
<td>8.8</td>
<td>Chemical Compositions of Bare and Metal Cored Filler Metals (AWS A5.9/A5.9M)</td>
</tr>
<tr>
<td>9.2</td>
<td>Suggested Gas Cup Size versus Maximum Welding Amperage, Manual GTAW</td>
</tr>
<tr>
<td>9.3</td>
<td>Suggested Welding Parameters, Manual GTAW</td>
</tr>
<tr>
<td>9.4</td>
<td>GMAW (MIG) Shielding Gas Selection</td>
</tr>
<tr>
<td>9.5</td>
<td>GMAW Parameters (Short Circuit, DCEP, He + 7.5%Ar + 2.5%CO₂ Shielding Gas)</td>
</tr>
<tr>
<td>9.6</td>
<td>GMAW Parameters (Spray Transfer, DCEP, 98%Ar + 2%O₂ Shielding Gas)</td>
</tr>
<tr>
<td>9.7</td>
<td>GMAW Electrodes Classification Scheme (AWS A5.22/A5.22M:2010)</td>
</tr>
<tr>
<td>9.8</td>
<td>Shielding Gas Selection for Flux Core Arc Welding</td>
</tr>
<tr>
<td>9.9</td>
<td>FCAW Electrodes Classification Scheme (AWS A5.22/A5.22M:2010)</td>
</tr>
<tr>
<td>9.10</td>
<td>FCAW Electrodes: Chemical Composition Requirements</td>
</tr>
<tr>
<td>9.11</td>
<td>AWS A5.22/A5.22M FCAW Electrodes and Rods (specified tensile properties)</td>
</tr>
<tr>
<td>9.12</td>
<td>Shielding Gas Selection for Flux Core Arc Welding</td>
</tr>
<tr>
<td>9.13</td>
<td>Typical Submerged Arc Welding Parameters, DCEP</td>
</tr>
<tr>
<td>9.14</td>
<td>Suggested Filler Metal Selection Chart—Wrought Standard Grades</td>
</tr>
<tr>
<td>9.15</td>
<td>Suggested Filler Metal Selection Chart—Wrought Proprietary Grades</td>
</tr>
<tr>
<td>9.16</td>
<td>Filler Selection for Stainless Steel Castings</td>
</tr>
<tr>
<td>9.17</td>
<td>Common Engineering Terms</td>
</tr>
<tr>
<td>9.18</td>
<td>Data</td>
</tr>
<tr>
<td>9.19</td>
<td>Common Welding-Related Conversion Factors</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Alloying Variations of Common Austenitic Stainless Steels</td>
<td>7</td>
</tr>
<tr>
<td>5.1</td>
<td>The Schaeffler Diagram</td>
<td>16</td>
</tr>
<tr>
<td>5.2</td>
<td>The DeLong Diagram</td>
<td>17</td>
</tr>
<tr>
<td>5.3</td>
<td>WRC-1992 Diagram for Stainless Steel Weld Metal</td>
<td>19</td>
</tr>
<tr>
<td>5.4a</td>
<td>Carbide Precipitation in Type 304 Austenitic Stainless Steel</td>
<td>22</td>
</tr>
<tr>
<td>5.4b</td>
<td>Carbide Reaction Temperature Ranges</td>
<td>23</td>
</tr>
<tr>
<td>5.5</td>
<td>The Effects of Chromium, Nickel and Other Elements on the Oxidation Resistance of Steels and Stainless Steels</td>
<td>25</td>
</tr>
<tr>
<td>8.1</td>
<td>Waveform Components and Arc and Burn-Off Rate</td>
<td>53</td>
</tr>
<tr>
<td>D.1</td>
<td>The Schoefer Diagram</td>
<td>85</td>
</tr>
</tbody>
</table>
Guide for the Joining of Solid Solution Austenitic Stainless Steels

1. General Requirements

1.1 Scope. This guide presents a description of solid solution austenitic stainless steels and the most commonly used welding processes and procedures for joining these materials. The most commonly used welding processes, including shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), submerged arc welding (SAW), and flux core arc welding (FCAW), are discussed in detail; laser beam, electron beam, plasma arc, resistance, and braze welding are not covered in great detail.

The welding processes discussed in this guide include recommended welding parameters, filler metals, shielding gases, and fluxes. Procedure qualifications, inspection and repair considerations and methods, and cleaning and safety considerations are also discussed. Practical information has been included as figures, tables, and graphs that should prove useful for determining the capabilities and limitations in the joining of austenitic stainless steels. This guide does not address martensitic, ferritic, or duplex stainless steels.

1.2 Units of Measure. This standard uses both the International System of Units (SI) and U.S. Customary Units. The latter are shown with brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system should be used independently.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard; some safety and health information is provided, but such issues are not fully addressed herein. Safety and health information is available from the following sources:

American Welding Society:
 (1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes
 (2) AWS Safety and Health Fact Sheets
 (3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:
 (1) Material Safety Data Sheets supplied by materials manufacturers
 (2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

2. Normative References

The standards listed below contain provisions, which through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.