Guide for the Fusion Welding of Titanium and Titanium Alloys

2nd Edition

Supersedes AWS G2.4/G2.4M:2007

Prepared by the American Welding Society (AWS) G2 Committee on the Joining of Metals and Alloys

Under the Direction of the AWS Technical Activities Committee

Approved by the AWS Board of Directors

Abstract

The standard Guide for the Fusion Welding of Titanium and Titanium Alloys provides instructional guidance for the welding of titanium and titanium alloys. This guide explains processes, equipment, materials, workshop practices, joint preparation, welding technique, tests, and the repair of defects.
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards. AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions is entrusted to appropriately qualified and competent personnel.

This standard may be superseded by new editions. This standard may also be corrected through publication of amendments or errata or supplemented by publication of addenda. Information on the latest editions of AWS standards including amendments, errata, and addenda is posted on the AWS web page (www.aws.org). Users should ensure that they have the latest edition, amendments, errata, and addenda.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 8669 NW 36 St, #130, Miami, FL 33166 (see Annex E). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS G2 Committee on the Joining of Metals and Alloys. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS G2 Committee on the Joining of Metals and Alloys and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS G2 Committee on the Joining of Metals and Alloys to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166.
This page is intentionally blank.
Personnel

AWS G 2 Committee on the Joining of Metals and Alloys

F. S. Babish, Chair Sandvik Materials Technology
G. Dunn, Vice Chair ExxonMobil Development Company
A. L. Diaz, Secretary American Welding Society
R. E. Avery Consultant to Nickel Institute
S. O. Luke Black & Veatch
R. C. Sutherlin ATI Wah Chang
D. J. Tillack Consultant to Nickel Institute

AWS G 2D Subcommittee on Reactive Alloys

R. C. Sutherlin, Chair ATI Wah Chang
A. L. Diaz, Secretary American Welding Society
S. S. Delmore CK Worldwide, Incorporated
B. Krueger Los Alamos National Laboratory
K. T. Tran Naval Surface Warfare Center
G. E. Trepus Boeing Commercial Airplanes

Advisors to the G 2D Subcommittee on Reactive Alloys

R. D. Kellum Williamette Welding Supply Company
H. Kotaki Consultant to The Japan Titanium Society
S. L. Luckowski United States Department of the Army
J. A. McMaster MC Consulting
J. Simpson International Titanium Association
S. D. Sparkowich Nerac, Incorporated
Foreword

This foreword is not part of AWS G2.4/G2.4M:2014, Guide for the Fusion Welding of Titanium and Titanium Alloys, but is included for informational purposes only.

This specification makes use of both U.S. Customary Units and the International System of Units (SI). The measurements are not exact equivalents; therefore each system must be used independently of the other, without combining values in any way when referring to filler metal properties. In selecting rational metric units, the AWS A1.1, Metric Practice Guide for the Welding Industry, and the International Standard ISO 544, Welding consumables — Technical delivery conditions for welding filler metals — Type of product, dimensions, tolerances and markings, are used where suitable. Tables and figures make use of both U.S. Customary and SI Units, which, with the application of the specified tolerances, provide for interchangeability of products in both the U.S. Customary and SI Units.

A vertical line in the margin or underlined text in clauses, tables, or figures indicates an editorial or technical change from the 2007 edition.

Comments and suggestions for the improvement of this standard are welcome. They should be sent to the Secretary, AWS G2 Committee on Joining Metals and Alloys, American Welding Society, 8669 NW 36 St, #130, Miami, FL 33166.
This page is intentionally blank.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>v</td>
</tr>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>1. General Requirements</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Units of Measurements</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Safety</td>
<td>1</td>
</tr>
<tr>
<td>2. Normative References</td>
<td>1</td>
</tr>
<tr>
<td>3. Terms and Definitions</td>
<td>2</td>
</tr>
<tr>
<td>4. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Oxygen, Nitrogen, Carbon, Iron, and Titanium</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Surface Oxide Film</td>
<td>5</td>
</tr>
<tr>
<td>5. Arc Welding Processes</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Gas Tungsten Arc Welding (GTAW)</td>
<td>6</td>
</tr>
<tr>
<td>5.2 Gas Metal Arc Welding (GMAW)</td>
<td>6</td>
</tr>
<tr>
<td>5.3 Plasma Arc Welding (PAW)</td>
<td>6</td>
</tr>
<tr>
<td>6. Equipment</td>
<td>7</td>
</tr>
<tr>
<td>6.1 Power Source</td>
<td>7</td>
</tr>
<tr>
<td>6.2 Welding Torch</td>
<td>7</td>
</tr>
<tr>
<td>6.3 Tungsten Electrodes</td>
<td>8</td>
</tr>
<tr>
<td>7. Materials</td>
<td>10</td>
</tr>
<tr>
<td>7.1 Base Metals</td>
<td>10</td>
</tr>
<tr>
<td>7.2 Filler Metals</td>
<td>10</td>
</tr>
<tr>
<td>7.3 Procedure Qualification</td>
<td>12</td>
</tr>
<tr>
<td>8. Workshop Practice</td>
<td>12</td>
</tr>
<tr>
<td>8.1 Workshop Layout</td>
<td>12</td>
</tr>
<tr>
<td>8.2 Material Identification and Storage</td>
<td>12</td>
</tr>
<tr>
<td>8.3 Inert Gas Protection</td>
<td>12</td>
</tr>
<tr>
<td>8.4 Inert Gas Distribution</td>
<td>13</td>
</tr>
<tr>
<td>8.5 In-Chamber Welding</td>
<td>13</td>
</tr>
<tr>
<td>8.6 Open-Air Welding</td>
<td>14</td>
</tr>
<tr>
<td>8.7 Shielding Gases</td>
<td>17</td>
</tr>
<tr>
<td>8.8 Argon Safety</td>
<td>17</td>
</tr>
<tr>
<td>9. Joint Preparation</td>
<td>17</td>
</tr>
<tr>
<td>9.1 Joint Design</td>
<td>17</td>
</tr>
<tr>
<td>9.2 Cutting</td>
<td>18</td>
</tr>
<tr>
<td>9.3 Preliminary Preparation</td>
<td>19</td>
</tr>
<tr>
<td>9.4 Cleaning for Welding</td>
<td>20</td>
</tr>
<tr>
<td>9.5 Fitup and Tack Welding</td>
<td>20</td>
</tr>
</tbody>
</table>
10. **Welding Technique**
10.1 Welding Parameters
10.2 Preheating
10.3 Filler Metal Practice
10.4 Starting and Stopping the Arc
10.5 Electrode Practice
10.6 Wire Feeding
10.7 Interpass Cleaning
10.8 Interpass Temperatures

11. **In-Process Weld Quality Tests**
11.1 Visual Inspection
11.2 Dew Point Testing
11.3 Bend Testing
11.4 Hardness Testing

12. **Nondestructive Test**
12.1 Radiography
12.2 Liquid Penetrant Testing
12.3 Ultrasonic Inspection

13. **Repair of Defects**
13.1 Fabrication Defects
13.2 Repairs Following Service Failures
13.3 Porosity
13.4 Filler Metals for Welding Titanium Alloys Metal Joints

Annex A (Informative)—Requirements of Base Metals
Annex B (Informative)—Requirements of Filler Metals
Annex C (Informative)—Informative References
Annex D (Informative)—Classifications for Titanium and Titanium Alloys
Annex E (Informative)—Guidelines for the Preparation of Technical Inquiries

List of AWS Documents on Joining Metals and Alloys
List of Tables

Table	Page No.	Description
1 | Approximate Current Ranges Depending upon the Electrode Diameter | 9
2 | ASTM Specifications for Product Forms | 10
3 | Recommended Filler Metals | 11
4 | Recommended Shielding Gas Purity and Dew Point | 13
5 | Typical Joint Designs | 18
6 | Typical Parameters for GTAW, GMAW, and PAW | 21
7 | Surface Color in Titanium Welds | 23
8 | Bend Test Requirements for Titanium Alloys | 25
A.1 | Chemical Composition Requirements of Base Metals (from ASTM B265) | 27
A.2 | Tensile Strength Requirements of Base Metals | 29
B.1 | Symbols for Chemical Composition and Composition Requirements | 32
D.1 | Guidelines for Compatible Filler Materials | 37
D.2 | Base Material Grouping S-51 | 38
D.3 | Base Material Grouping S-52 | 38
D.4 | Base Material Grouping S-53 | 39
D.5 | Base Material Grouping S-54 | 40
D.6 | Filler Material Grouping A-51B | 40
D.7 | Filler Material Grouping A-52B | 40
D.8 | Filler Material Grouping A-53B | 40

List of Figures

Figure	Description
1 | Body-Centered Cubic (BCC) Structure | 3
2 | Hexagonal Close-Packed (HCP) Structure | 3
3 | Interstitial Elements | 4
4 | Substitutional Elements | 4
5 | Titanium Surface Oxide Formed by Heating in Air | 5
6 | Large-Diameter Gas Cup and Lens for Titanium Welding | 7
7 | Tungsten Electrode Tip Shape | 8
8 | Collapsible Plastic Chamber Purged with Argon | 14
9 | Typical Trailing Shield Design | 15
10 | Examples of Backup Shields for Manual GTAW | 16
11 | Color Sequence in Titanium | 23
12 | Contamination of Tungsten Electrode from Air Entrainment | 24
This page is intentionally blank.
Guide for the Fusion Welding of Titanium and Titanium Alloys

1. General Requirements

1.1 Scope. This guide provides information on welding processes and procedures that are recommended for use in titanium fabrication. The document presents detailed and up-to-date technical information on the best practices to allow first time fabricators of titanium as well as established fabricators to join titanium parts into high quality components.

1.2 Units of Measurements. This standard makes use of both the U.S. Customary Units and the International System of Units (SI). The latter are shown within brackets ([]) or in appropriate columns in tables and figures. The measurements may not be exact equivalents; therefore, each system must be used independently.

1.3 Safety. Safety and health issues and concerns are beyond the scope of this standard and therefore are not fully addressed herein. Safety and health information is available from the following sources:

American Welding Society:

(1) ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes

(2) AWS Safety and Health Fact Sheets

(3) Other safety and health information on the AWS website

Material or Equipment Manufacturers:

(1) Material Safety Data Sheets supplied by materials manufacturers

(2) Operating Manuals supplied by equipment manufacturers

Applicable Regulatory Agencies

Work performed in accordance with this standard may involve the use of materials that have been deemed hazardous, and may involve operations or equipment that may cause injury or death. This standard does not purport to address all safety and health risks that may be encountered. The user of this standard should establish an appropriate safety program to address such risks as well as to meet applicable regulatory requirements. ANSI Z49.1 should be considered when developing the safety program.

2. Normative References

The following standards contain provisions which, through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revision of, any of these publications do not apply. (Informative standards and specifications for titanium fabrication are available in Annexes C and D.)

AWS Documents:

AWS A3.0M / A3.0, Standard Welding Terms and Definitions, Including Terms for Adhesive Bonding, Brazing, Soldering, Thermal Cutting, and Thermal Spraying;

1 AWS standards are published by the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166.