Welding Handbook

Ninth Edition
Volume 4

MATERIALS AND APPLICATIONS, PART 1

American Welding Society
Welding Handbook, Ninth Edition

Volume 1 Welding Science and Technology

Volume 2 Welding Processes, Part 1

Volume 3 Welding Processes, Part 2

Volume 4 Materials and Applications, Part 1

Volume 5 Materials and Applications, Part 2
Welding Handbook

Ninth Edition
Volume 4

MATERIALS AND APPLICATIONS, PART 1

Prepared under the direction of the
Welding Handbook Committee

Annette O'Brien, Editor
Carlos Guzman, Associate Editor

American Welding Society
550 N.W. LeJeune Road
Miami, FL 33126
© 2011 by American Welding Society
All rights reserved

No portion of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

Authorization to photocopy items for internal, personal, or educational classroom use only, or the internal, personal, or educational classroom use of specific clients, is granted by the American Welding Society (AWS) provided the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; telephone: (978) 750-8400; Internet: www.copyight.com.

Library of Congress Control Number: 2001089999

The Welding Handbook is the result of the collective effort of many volunteer technical specialists who provide information to assist with the design and application of welding and allied processes.

The information and data presented in the Welding Handbook are intended for informational purposes only. Reasonable care is exercised in the compilation and publication of the Welding Handbook to ensure the authenticity of the contents. However, no representation is made as to the accuracy, reliability, or completeness of this information, and an independent substantiating investigation of the information should be undertaken by the user.

The information contained in the Welding Handbook shall not be construed as a grant of any right of manufacture, sale, use, or reproduction in connection with any method, process, apparatus, product, composition, or system, which is covered by patent, copyright, or trademark. Also, it shall not be construed as a defense against any liability for such infringement. Whether the use of any information in the Welding Handbook would result in an infringement of any patent, copyright, or trademark is a determination to be made by the user.

Printed in the United States of America
DEDICATION

Phillip I. Temple

This book is dedicated to Phil Temple in recognition of the guidance he has provided to the Welding Handbook as a contributor, reviewer, Chapter Chair, and as Chair of the Welding Handbook Committee from 1996 through 1999 and again from 2004 through 2007. He has been a Welding Handbook volunteer for the past 20 years, contributing to the publishing of several volumes of the 8th and 9th editions.

The leadership he brought to the Welding Handbook was gleaned from experience as he progressed from welder to welding instructor, welding superintendent to welding engineer, then to quality assurance management in the nuclear power industry. A graduate of LeTourneau University, he has been an active member of the American Welding Society for more than 35 years. In 2000, he received the National Meritorious Award for good counsel, loyalty, and dedication to the affairs of the Society.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>x</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xi</td>
</tr>
<tr>
<td>REVIEWERS</td>
<td>xii</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER 1—CARBON AND LOW-ALLOY STEELS</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Welding Classifications</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Welding Carbon and Low-Alloy Steels</td>
<td>2</td>
</tr>
<tr>
<td>Common Forms of Weld-Related Cracking in Carbon and Low-Alloy Steels</td>
<td>3</td>
</tr>
<tr>
<td>Carbon Steels</td>
<td>12</td>
</tr>
<tr>
<td>High-Strength Low-Alloy Steels</td>
<td>23</td>
</tr>
<tr>
<td>Quenched and Tempered Steels</td>
<td>41</td>
</tr>
<tr>
<td>Heat-Treatable Low-Alloy Steels</td>
<td>55</td>
</tr>
<tr>
<td>Chromium-Molybdenum Steels</td>
<td>67</td>
</tr>
<tr>
<td>Applications</td>
<td>75</td>
</tr>
<tr>
<td>Safe Practices</td>
<td>83</td>
</tr>
<tr>
<td>Bibliography</td>
<td>90</td>
</tr>
<tr>
<td>Supplementary Reading List</td>
<td>90</td>
</tr>
<tr>
<td>CHAPTER 2—HIGH-ALLOY STEELS</td>
<td>92</td>
</tr>
<tr>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>Classification of High-Alloy Steels</td>
<td>96</td>
</tr>
<tr>
<td>Precipitation-Hardening Steels</td>
<td>96</td>
</tr>
<tr>
<td>Maraging Steels</td>
<td>98</td>
</tr>
<tr>
<td>Nickel-Cobalt Steels</td>
<td>99</td>
</tr>
<tr>
<td>Austenitic Manganese Steels</td>
<td>108</td>
</tr>
<tr>
<td>Applications</td>
<td>119</td>
</tr>
<tr>
<td>Safe Practices</td>
<td>130</td>
</tr>
<tr>
<td>Conclusion</td>
<td>133</td>
</tr>
<tr>
<td>Bibliography</td>
<td>133</td>
</tr>
<tr>
<td>Supplementary Reading List</td>
<td>134</td>
</tr>
<tr>
<td>CHAPTER 3—COATED STEELS</td>
<td>135</td>
</tr>
<tr>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>Terneplate</td>
<td>138</td>
</tr>
<tr>
<td>Tin-Plated Steel (Tinplate)</td>
<td>138</td>
</tr>
<tr>
<td>Joining Processes for Tinplate</td>
<td>142</td>
</tr>
<tr>
<td>Galvanized Steels</td>
<td>143</td>
</tr>
<tr>
<td>Aluminized Steels</td>
<td>145</td>
</tr>
<tr>
<td>Chromized Steels</td>
<td>186</td>
</tr>
<tr>
<td>Other Coated Steels</td>
<td>193</td>
</tr>
<tr>
<td>Painted Steels</td>
<td>196</td>
</tr>
<tr>
<td>Applications</td>
<td>207</td>
</tr>
<tr>
<td>Safe Practices</td>
<td>209</td>
</tr>
<tr>
<td>Bibliography</td>
<td>216</td>
</tr>
<tr>
<td>Supplementary Reading List</td>
<td>217</td>
</tr>
<tr>
<td>CHAPTER 4—TOOL AND DIE STEELS</td>
<td>218</td>
</tr>
<tr>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>Metallurgical Properties</td>
<td>222</td>
</tr>
<tr>
<td>Tool Steel Classifications</td>
<td>222</td>
</tr>
<tr>
<td>Weldability</td>
<td>223</td>
</tr>
<tr>
<td>Weldability</td>
<td>229</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The Welding Handbook Committee and the editors gratefully recognize the contributions of the volunteers who have created, developed, and documented the technology of welding and shared it in past editions of the Welding Handbook, beginning with the first edition published in 1938. The enthusiasm and meticulous dedication of the authors and technologists reflected in the previous eight editions of the Welding Handbook are continued in this volume of the Ninth Edition.

This volume was compiled by the members the Welding Handbook Volume 4 Committee and the WH4 Chapter Committees, with oversight by the Welding Handbook Committee. Chapter committee chairs, chapter committee members, and oversight persons are recognized on the title pages of the chapters.

The Welding Handbook Committee and the editors recognize and appreciate the AWS technical committees who developed the consensus standards that pertain to this volume, and acknowledge the work of W. R. Oates and A. M. Saitta, editors of Volume 4, Eighth Edition. The Welding Handbook Committee is grateful to members of the AWS Technical Activities Committee and the AWS Safety and Health Committee for their reviews of the chapters. The editors appreciate the AWS Technical Services staff for their assistance during the preparation of this volume.

Welding Handbook Committee Chairs, 1938–2011

1938–1942 D. S. Jacobs
Circa 1950 H. L. Boardman
1956–1958 F. L. Plummer
1958–1960 R. D. Stout
1960–1962 J. F. Randall
1962–1965 G. E. Claussen
1965–1966 H. Schwartzbart
1966–1967 A. Lesnewich
1967–1968 W. L. Burch
1968–1969 L. F. Lockwood
1970–1971 W. V. Wilcox
1971–1972 C. E. Jackson
1972–1975 S. Weiss
1975–1978 A. W. Pense
1978–1981 W. L. Wilcox
1981–1984 J. R. Condra
1984–1987 J. R. Hannahs
1987–1990 M. J. Tomsic
1990–1992 C. W. Case
1996–1999 P. I. Temple
1999–2004 H. R. Castner
2004–2007 P. I. Temple
2007–2009 C. E. Pepper
2009–2011 Wangen Lin
PREFACE

This is Volume 4 of the five-volume series in the Ninth Edition of the Welding Handbook. It is Materials and Applications, Part 1, presented in ten peer-reviewed chapters covering the metallurgical properties of various forms of ferrous metals and how these properties affect welding. The titles of the chapters in this book, which includes two applications chapters, indicate the variety of challenges presented to welders, designers, welding engineers, and others in the welding workplace.

The ability of scientists to examine the microstructures of the metals, identify constituent elements, and determine how the properties of the metals can be used and controlled during welding is reflected in the updated and expanded information in this book. Many of the best scientists in the welding industry from university, government or other research laboratories, metals producing companies, fabricators, consulting firms, and testing facilities have stepped forward as volunteers to update this volume. These highly regarded experts are recognized on the title pages of their respective chapters.

Three basic chapters of this volume, Chapter 1, Carbon and Low-Alloy Steels; Chapter 2, High-Alloy Steels; and Chapter 5, Stainless and Heat-Resistant Steels contain detailed sections on the metallurgy, composition and properties of steels, and methods of producing high-integrity welds in carbon steels, alloy steels, and stainless steels.

Different sets of welding conditions, challenges, and solutions are presented for the specialized steels represented in Chapter 3, Coated Steels; Chapter 4, Tool and Die Steels; Chapter 6, Clad and Dissimilar Metals; Chapter 7, Surfacing Materials; and Chapter 8, Cast Irons. The chapters provide information on the composition, metallurgy, weldability, and recommended welding procedures for these metals.

Two major applications are included in this volume. Chapter 9, Maintenance and Repair Welding, contains a model for a systematic approach to the sometimes difficult procedures involved in repair welding. Chapter 10, Underwater Welding and Cutting, contains critical information on producing strong, durable welds, sometimes under very difficult welding conditions, for use in the severest of service conditions.

A table of contents of each chapter is outlined on the cover page, along with names and affiliations of contributors of the updated information. A subject index with cross-references appears at the end of the volume. Appendix A contains a list of safety standards and publishers. Frequent references are made to the chapters of Ninth Edition Volumes 1, 2, and 3. To avoid repetition of information published in these volumes, a reference guide is presented in Appendix B.

This book follows three previously published volumes of the Ninth Edition of the Welding Handbook: Volume 1, Welding Science and Technology, which provides prerequisite information for welding and the welding processes; Volume 2, Welding Processes, Part 1, which contains the technical details of arc welding and cutting, the gas processes, brazing, and soldering; and Volume 3, Welding Processes, Part 2, which is devoted to the resistance, solid state, and other welding processes, such as laser beam, electron beam, and ultrasonic welding.

Wangen Lin, Chair
Welding Handbook Committee

Douglas D. Kautz, Chair
Welding Handbook Volume 4 Committee

Annette O'Brien, Editor
Carlos Guzman, Associate Editor
Welding Handbook

xi
REVIEWERS
AMERICAN WELDING SOCIETY
SAFETY AND HEALTH COMMITTEE AND
TECHNICAL ACTIVITIES COMMITTEE

D. E. Clark Idaho National Laboratory
D. A. Fink The Lincoln Electric Company
S. R. Fiore Edison Welding Institute
E. H. Gray U.S. Nuclear Regulatory Commission
P. Hochanadel Los Alamos National Laboratory
J. M. Jennings Expert Services
D. D. Kautz Los Alamos National Laboratory
D. J. Landon Vermeer Corporation
D. A. Lee Deloro Stellite Company Inc.
M. J. Lucas Belcan Corporation
K. A. Lyttle Praxair, Inc.
D. L. McQuaid D. L. McQuaid & Associates, Incorporated
D. D. Rager Rager Consulting Incorporated
A. W. Sindel Alstom Power, Inc.—Thermal Systems
W. J. Sperko Sperko Engineering Services
M. Untermeyer Union Tank Car Company
D. A. Werba Miller Electric Manufacturing Company
CONTRIBUTORS

WELDING HANDBOOK COMMITTEE

Wangen Lin Pratt & Whitney
R. W. Warke, Vice Chair LeTourneau University
D. D. Kautz, 2nd Vice Chair Los Alamos National Laboratory
B. J. Bastian Benmar Associates
S. Moran Consultant
J. H. Myers Welding Inspection & Consulting Services
A. O’Brien, Secretary American Welding Society
C. E Pepper URS Corporation
W. L. Roth The Procter & Gamble Company
P. I. Temple Detroit Edison
G. A. Young Dynamic Materials

WELDING HANDBOOK VOLUME 4 COMMITTEE

D. D. Kautz, Chair Los Alamos National Laboratory
A. O’Brien, Secretary American Welding Society
R. W. Warke LeTourneau University
D. E. Williams Consulting Engineer
G. A. Young Dynamic Materials

CHAPTER CHAIRS

Chapter 1 R. W. Warke LeTourneau University
Chapter 2 D. J. Kotecki Damian Kotecki Welding Consultants
Chapter 3 G. W. Dallin GalvInfo Center
Chapter 4 G. A. Knight Chrysler Corporation (Retired)
Chapter 5 T. J. Lienert Los Alamos National Laboratory
Chapter 6 M. D. Hayes Acute Technological Services
Chapter 7 R. Menon Stoody Thermadyne Company
Chapter 8 R. A. Bushey ESAB Welding and Cutting Products
Chapter 9 J. A. Grantham Welding & Joining Management Group
Co-Chair P. I. Temple Detroit Edison
Chapter 10 S. Liu Colorado School of Mines