CHAPTER 5

DESIGN FOR WELDING

Prepared by the Welding Handbook Chapter Committee on Design for Welding:
R. S. Funderburk, Chair
The Lincoln Electric Company
O. W. Blodgett
The Lincoln Electric Company
C. J. Carter
American Institute of Steel Construction (AISC)
M. V. Holland
Paxton & Vierling Steel Company
L. A. Kloiber
LeJeune Steel Company
R. M. Kotan
Omaha Public Power District
W. W. Sanders, Jr.
Iowa State University
R. E. Shaw, Jr.
Steel Structures Technology Center, Incorporated
W. A. Thornton
Cives Steel Company

Welding Handbook Committee Member:
J. M. Gerken, Sr.
Consultant

Contents
Introduction 158
Properties of Metals 158
Weldment Design Program 166
Welded Design Considerations 170
Design of Welded Joints 182
Selection of Weld Type 193
Sizing of Steel Welds 196
Tubular Connections 216
Aluminum Structures 226
Conclusion 236
Bibliography 237
Supplementary Reading List 237

Photograph courtesy of Edison Welding Institute
INTRODUCTION

A weldment is an assembly of component parts joined by welding. It may be a bridge, a building frame, an automobile, a truck body, a trailer hitch, a piece of machinery, or an offshore oil drilling structure. In the field of weldment design, the primary objectives are to produce an assembly that (1) performs its intended functions, (2) has the required reliability and safety, and (3) can be fabricated, inspected, transported, and placed in service at a minimum total cost. The total cost includes the cost of design, materials, fabrication, erection, inspection, operation, repair, and product maintenance.

The designers of weldments must have an understanding of basic design principles and concepts. They must have some knowledge of and experience in cutting and shaping metals; assembling components; preparing and fabricating welded joints; evaluating welds in compliance with established acceptance criteria; and performing nondestructive examination and mechanical testing. Designers routinely apply knowledge of the following areas when evaluating the effects these may have on the design of weldments:

1. Mechanical and physical properties of metals and weldments;
2. Weldability of metals;
3. Welding processes, costs, and variations in welding procedures;
4. Filler metals and properties of weld metals;
5. Thermal effects of welding;
6. Effects of restraint and stress concentrations;
7. Control of distortion;
8. Efficient use of steel, aluminum, and other metals in weldments;
9. Design for appropriate stiffness or flexibility in welded beams and other structural members;
10. Design for torsional resistance;
11. Effects of thermal strains induced by welding in the presence of restraints;
12. Effects of stress induced by welding in combination with design stresses;
13. Practical considerations of welding and the selection of proper joint designs for the application;
14. Communication of weldment design to the shop, including the use of welding symbols; and
15. Applicable welding codes and safety standards.

As several of these topics involve highly specialized areas of science and technology, designers should refrain from relying entirely upon their own knowledge and experience, which may be may generalized. They are encouraged to consult with welding experts whenever appropriate.

PROPERTIES OF METALS

The properties of metals can be divided into five general groups: (1) mechanical, (2) physical, (3) corrosion, (4) optical, and (5) nuclear. The typical characteristics of each group are presented in Table 5.1. These are further categorized as structure-insensitive or structure-sensitive, as this distinction is made in most textbooks.