Abstract

This Code covers the requirements for welding structures or components under the surface of water. It includes welding in both dry and wet environments. Clauses 1 through 6 constitute the general requirements for underwater welding while clauses 7 through 9 contain the special requirements applicable to three individual classes of weld:

- **Class A**—Comparable to above-water welding
- **Class B**—For less critical applications
- **Class O**—To meet the requirements of another designated code or specification
Statement on the Use of American Welding Society Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society (AWS) are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute (ANSI). When AWS American National Standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

AWS American National Standards are developed through a consensus standards development process that brings together volunteers representing varied viewpoints and interests to achieve consensus. While the AWS administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its standards.

AWS disclaims liability for any injury to persons or to property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this standard. AWS also makes no guarantee or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this standard available, AWS is neither undertaking to render professional or other services for or on behalf of any person or entity, nor is AWS undertaking to perform any duty owed by any person or entity to someone else. Anyone using these documents should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. It is assumed that the use of this standard and its provisions are entrusted to appropriately qualified and competent personnel.

This standard may be superseded by the issuance of new editions. Users should ensure that they have the latest edition.

Publication of this standard does not authorize infringement of any patent or trade name. Users of this standard accept any and all liabilities for infringement of any patent or trade name items. AWS disclaims liability for the infringement of any patent or product trade name resulting from the use of this standard.

Finally, the AWS does not monitor, police, or enforce compliance with this standard, nor does it have the power to do so.

On occasion, text, tables, or figures are printed incorrectly, constituting errata. Such errata, when discovered, are posted on the AWS web page (www.aws.org).

Official interpretations of any of the technical requirements of this standard may only be obtained by sending a request, in writing, to the appropriate technical committee. Such requests should be addressed to the American Welding Society, Attention: Managing Director, Technical Services Division, 550 N.W. LeJeune Road, Miami, FL 33126 (see Annex F). With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. These opinions are offered solely as a convenience to users of this standard, and they do not constitute professional advice. Such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS D3 Committee on Welding in Marine Construction. It must be reviewed every five years, and if not revised, it must be either reaffirmed or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are required and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS D3 Committee on Welding in Marine Construction and the author of the comments will be informed of the Committee’s response to the comments. Guests are invited to attend all meetings of the AWS D3 Committee on Welding in Marine Construction to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Technical Activities Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
This page is intentionally blank.
Dedication

The D3 Committee on Welding in Marine Construction dedicates this edition of AWS D3.6M, Underwater Welding Code, to the memory of Conway E. ‘Whitey’ Grubbs.

C. E. ‘WHITEY’ GRUBBS
1918–2004

Whitey passed away in June 2004 at the age of 85 and is considered by many in the field as the father of underwater wet welding. During his more than 30 years of dedication to underwater welding, Whitey founded the AWS committee that established the standard for underwater welding, and served as its Chairman from 1974 to 1988. He authored more than 50 papers on underwater welding, received numerous awards for his contributions, and held three patents. He was the first to design and use the scallop sleeve splice for connecting tubular members by wet welding. Whitey retired from Global Industries as the Director of Underwater Welding Research. He was a friend and mentor to many in the industry today.
This page is intentionally blank.
Personnel

AWS D3 Committee on Welding in Marine Construction

M. J. Ludwig, Chair Fronius USA, LLC
M. J. Sullivan, 1st Vice-Chair NASSCO
S. A. Collins, 2nd Vice-Chair Maine Maritime Academy
B. McGrath, Secretary American Welding Society
 B. Baldree Keppel-AmFELS
 T. W. Burns AlcoTec Wire Corporation
 G. M. Cain Oxy lance Incorporated
 C. B. Champney Nelson Stud Welding
 D. Cottle D. C. Fabricators
 B. H. Halverson Marinette Marine Corporation
 D. R. Haydock General Atomics Electromagnetic
 P. A. Hebert Northrop Grumman Newport News
 R. D. Holdsworth Management Systems Technology
 M. H. Huelskamp Gulf Marine Fabricators
 K. L. Johnson Todd Pacific Shipyard
 L. G. Kvidahl Northrop Grumman Shipbuilding
 H. W. Lehman Bechtel
 J. W. Mumaw Nelson Stud Welding
 S. E. Pollard Machinists, Incorporated
 T. Ulinski Springs Fabrication Inc

Advisors to the AWS D3 Committee on Welding in Marine Construction

T. Anderson ESAB
 S. Ivanov Consultant
 T. Iwata National Maritime Research Institute
 A. W. Johnson A. W. Johnson & Associates
 K. Masubuchi Mass Institute of Technology
 L. Milacek Textron
 C. L. Null Consultant
 L. D. Parkinson PCS Marine
 J. M. Sawhill Jr. Sawhills Consulting
 A. T. Sheppard The DuRoss Group, Incorporated

AWS D3B Subcommittee on Underwater Welding

R. D. Holdsworth, Chair Management Systems Technology
P. T. Dulaune Jr, Vice-Chair DynMcDermott Corporation
B. McGrath, Secretary American Welding Society
 C. L. Anderson Sonsub International, Incorporated
 M. Borean Seneca College
 G. M. Cain Oxy lance, Incorporated
 W. J. Couch Oceaneering Diving
 J. A. Grantham Welding & Joining Management Group
 D. R. Haydock General Atomics Electromagnetic
 B. E. James Canadian Welding Bureau
 R. Murray US Navy
 J. E. O’Sullivan Proconl, LLC
 I. Pachniuk Polysoude
K. S. Peters Miami Diver, Incorporated
M. A. Pett Hydroweld
T. J. Reynolds Global Divers and Marine Contractors
L. R. Rowland Shell International E & P Deepwater Services
L. W. Shupe Phoenix International, Incorporated
W. W. StCyr II NASA
P. L. Smith Smith LaSalle Incorporated
F. L. Stonum DiveSpeak, Incorporated
P. Szelagowski Consultant
T. C. West Welding Engineering Services

Advisors to the AWS D3B Subcommittee on Underwater Welding

P. M. Broda Framatome Technologies, Incorporated
S. Ibarra Jr. B. P. America, Incorporated
V. Kononenko E O Paton Electric Welding Institute
A. Matsunawa Osaka University
I. Richardson Technical University of Delft
J. C. Steinmetz Marine Technology Services
M. van den Oetelaar Seneca College
E. L. VonRosenberg Material & Welding Technology
Foreword

This foreword is not part of AWS D3.6M:2010, Underwater Welding Code, but is included for informational purposes only.

In 1975, the AWS Committee on Marine Construction requested the Subcommittee on Underwater Welding to establish a standard reflecting state-of-the-art technology relative to underwater welding. The first edition of the Code was published in 1983, with subsequent editions issued in 1989, 1993, and 1999.

This edition is presented with the SI units of measure being the standard. The U.S. Customary Units are approximate and for information only. Clauses 1 through 6 constitute the general requirements applicable to all classes of underwater welds. Clauses 7 through 9 contain unique requirements applicable to each class.

Initially applied as a means of temporary repair for damaged steel-hulled vessels, underwater welding has evolved into an accepted method of construction and repair of engineered structures. Recent applications include engineered repair and alteration of off-shore structures, submerged marine pipelines, underwater port facilities and nuclear power plant components.

There are five basic methods of underwater welding currently in use:

1. Welding in a pressure vessel in which the pressure is reduced to approximately one atmosphere, independent of depth (dry welding at one atmosphere).
2. Welding at ambient pressure in a large chamber from which water has been displaced in an atmosphere such that the welder/diver does not work in diving equipment (dry welding in a habitat).
3. Welding at ambient pressure in a simple open-bottomed dry chamber that accommodates, as a minimum, the head and shoulders of the welder/diver in full diving equipment (dry chamber welding).
4. Welding at ambient pressure in a small, transparent, gas-filled enclosure with the welder/diver outside in the water (dry spot welding).
5. Welding at ambient pressure with the welder/diver in the water without any mechanical barrier between the water and the welding arc (wet welding).

No sharp distinction exists between these methods; intermediate degrees of weldment and welder protection from the water are in use. Metal-transfer characteristics, solidification behavior, weld appearance, mechanical properties, and other characteristics can vary with pressure, and each method of welding may differ from its usual behavior with conventional surface welding. Special quality requirements and inspection procedures must be established for underwater welds because of the altered environment and accessibility. This document is intended to define the important variables associated with underwater welding and to describe welding and inspection procedures so that work of a known quality level can be conveniently specified.

Three weld classes (A, B, and O) are specified herein. They encompass the range of quality and properties currently produced by application of the various methods. Each weld class defines a set of criteria for weldment properties that must be established during qualification, and a set of weld soundness requirements that are to be verified during construction. Welds in each class must meet all the criteria specified for that class. This Code does not address the selection of the class that meets the service requirements of a particular application. The selection of the class of weld to be provided is to be prescribed by the customer.

Comments and suggestions for the improvement of this standard are welcome. They should be addressed to the Secretary, AWS D3B Subcommittee on Underwater Welding, American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
This page is intentionally blank.
Table of Contents

<table>
<thead>
<tr>
<th>Dedication</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>vi</td>
</tr>
<tr>
<td>Foreword</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Forms</td>
<td>xv</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Normative References</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Purpose</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Application</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Base Metals</td>
<td>2</td>
</tr>
<tr>
<td>1.6 Welding Process</td>
<td>2</td>
</tr>
<tr>
<td>1.7 Definitions</td>
<td>3</td>
</tr>
<tr>
<td>1.8 Welding and NDE Symbols</td>
<td>3</td>
</tr>
<tr>
<td>1.9 Safety and Health</td>
<td>3</td>
</tr>
<tr>
<td>1.10 Standard Units of Measure</td>
<td>3</td>
</tr>
<tr>
<td>2. Classification and Design of Welded Connections</td>
<td></td>
</tr>
<tr>
<td>2.1 Classification of Welds</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Design</td>
<td>5</td>
</tr>
<tr>
<td>3. Workmanship</td>
<td></td>
</tr>
<tr>
<td>3.1 General</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Base Metal Preparation</td>
<td>6</td>
</tr>
<tr>
<td>3.3 Assembly</td>
<td>6</td>
</tr>
<tr>
<td>3.4 Confirmation Weld</td>
<td>6</td>
</tr>
<tr>
<td>3.5 Dimensional Tolerances</td>
<td>7</td>
</tr>
<tr>
<td>3.6 Weld Profiles</td>
<td>8</td>
</tr>
<tr>
<td>3.7 Tack Welds and Temporary Welds</td>
<td>8</td>
</tr>
<tr>
<td>3.8 Repair</td>
<td>8</td>
</tr>
<tr>
<td>3.9 Peening</td>
<td>8</td>
</tr>
<tr>
<td>3.10 Arc Strikes</td>
<td>8</td>
</tr>
<tr>
<td>3.11 Weld Cleaning</td>
<td>8</td>
</tr>
<tr>
<td>4. Technique</td>
<td></td>
</tr>
<tr>
<td>4.1 Filler Metal</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Measurement of Variable Conditions</td>
<td>9</td>
</tr>
<tr>
<td>4.3 Weld Temperature Control</td>
<td>9</td>
</tr>
<tr>
<td>5. Qualification</td>
<td></td>
</tr>
<tr>
<td>5.1 Approved Procedure</td>
<td>10</td>
</tr>
<tr>
<td>5.2 Previous Qualification</td>
<td>10</td>
</tr>
<tr>
<td>5.3 Performance Qualification</td>
<td>10</td>
</tr>
<tr>
<td>5.4 Qualification Responsibility</td>
<td>10</td>
</tr>
</tbody>
</table>

Part I—General Requirements

5.1 Approved Procedure | 10 |
5.2 Previous Qualification | 10 |
5.3 Performance Qualification | 10 |
5.4 Qualification Responsibility | 10 |
Part II—Procedure Qualification
6. Procedure Qualification
5.5 Limitation of Variables
5.6 Procedure Qualification Variables
5.7 Types of Tests
5.8 Position of Test Welds
5.9 Joint Configuration
5.10 Test Specimens: Number and Type
5.11 Preparation and Testing of Specimens
5.12 Test Results Required
5.13 Supplemental Requirements
5.14 Records

Part III—Welder Qualification
5.15 General
5.16 Limitations of Variables
5.17 Qualification Tests Required
5.18 Method of Testing
5.19 Tests Results Required
5.20 Retests
5.21 Period of Effectiveness
5.22 Records

6. Inspections
Part I—General Requirements
6.1 General
6.2 Inspection of Materials
6.3 Inspection of Equipment
6.4 Verification of Procedure and Performance Qualification
6.5 Inspection of Work and Records
6.6 Obligations of Contractor
6.7 Inspection Methods
6.8 Inspection Personnel Qualification

Part II—Visual Examination
6.9 General
6.10 Procedure

Part III—Radiographic Examination
6.11 General
6.12 Procedure

Part IV—Ultrasonic Examination
6.13 General
6.14 Procedure

Part V—Magnetic Particle Examination
6.15 General
6.16 Procedure

Part VI—Eddy Current Examination
6.17 General
6.18 Procedure

7. Class A Welds
7.1 Application

Part I—Procedure Qualification
7.2 Testing Requirement
7.3 Groove Welds
7.4 Fillet Welds
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Welding Variables—Dry Welding by Shielded Metal Arc, Gas Metal Arc, Flux Cored Arc, Gas Tungsten Arc, and Plasma Arc Welding Process</td>
</tr>
<tr>
<td>5.2</td>
<td>Welding Variables—Wet Welding by Shielded Metal Arc or Flux Cored Arc Welding</td>
</tr>
<tr>
<td>5.3</td>
<td>Depth Limitation for Qualification Welding</td>
</tr>
<tr>
<td>5.4</td>
<td>Procedure Qualification—Type and Position Limitations</td>
</tr>
<tr>
<td>5.5</td>
<td>Positions for Welder Qualification</td>
</tr>
<tr>
<td>5.6</td>
<td>Pipe Diameter Groups for Welder Qualification</td>
</tr>
<tr>
<td>7.1</td>
<td>Weld Procedure Qualification—Number and Type of Test Specimens for Class A Welds</td>
</tr>
<tr>
<td>7.2</td>
<td>Weld Procedure Qualification—Mechanical Test Acceptance Criteria for Class A Welds</td>
</tr>
<tr>
<td>7.3</td>
<td>Welder Performance Qualification—Number and Type of Test Specimens for Class A Welds</td>
</tr>
<tr>
<td>8.1</td>
<td>Weld Procedure Qualification—Number and Type of Test Specimens for Class B Welds</td>
</tr>
<tr>
<td>8.2</td>
<td>Weld Procedure Qualification—Mechanical Test Acceptance Criteria for Class B Welds</td>
</tr>
<tr>
<td>8.3</td>
<td>Welder Performance Qualification—Number and Type of Test Specimens for Class B Welds</td>
</tr>
<tr>
<td>9.1</td>
<td>Weld Procedure Qualification—Number and Type of Test Specimens for Class O Welds</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Tolerances in Assembly of Groove Weld Butt Joints—Dry Welding</td>
</tr>
<tr>
<td>5.1</td>
<td>Positions of Groove Welds</td>
</tr>
<tr>
<td>5.2</td>
<td>Positions of Fillet Welds</td>
</tr>
<tr>
<td>5.3</td>
<td>Positions of Test Plates for Groove Welds</td>
</tr>
<tr>
<td>5.4</td>
<td>Positions of Test Pipe or Tubing for Groove Welds</td>
</tr>
<tr>
<td>5.5</td>
<td>Positions of Test Plates for Fillet Welds</td>
</tr>
<tr>
<td>5.6</td>
<td>Positions of Test Pipes for Fillet Welds</td>
</tr>
<tr>
<td>5.7</td>
<td>Reduced-Section Tension Specimens</td>
</tr>
<tr>
<td>5.7A</td>
<td>Reduced-Section Tension Specimens (U.S. Customary Units)</td>
</tr>
<tr>
<td>5.8</td>
<td>Fillet Weld Break and Macroetch Test Specimens</td>
</tr>
<tr>
<td>5.8A</td>
<td>Fillet Weld Break and Macroetch Test Specimens (U.S. Customary Units)</td>
</tr>
<tr>
<td>5.9</td>
<td>Lap Joint Fillet Macroetch Test Assembly and Specimen Location</td>
</tr>
<tr>
<td>5.10</td>
<td>Face- and Root-Bend Specimens</td>
</tr>
<tr>
<td>5.10A</td>
<td>Face- and Root-Bend Specimens (U.S. Customary Units)</td>
</tr>
<tr>
<td>5.11</td>
<td>Side-Bend Specimens</td>
</tr>
<tr>
<td>5.11A</td>
<td>Side-Bend Specimens (U.S. Customary Units)</td>
</tr>
<tr>
<td>5.12</td>
<td>Bend Test Jigs</td>
</tr>
<tr>
<td>5.12A</td>
<td>Bend Test Jigs (U.S. Customary Units)</td>
</tr>
<tr>
<td>5.13</td>
<td>All-Weld-Metal Tension and Impact Specimen Test Plate Design and Specimen Locations</td>
</tr>
<tr>
<td>5.13A</td>
<td>All-Weld-Metal Tension and Impact Specimen Test Plate Design and Specimen Locations (U.S. Customary Units)</td>
</tr>
<tr>
<td>5.14</td>
<td>All-Weld-Metal Tension Test Specimen Design</td>
</tr>
<tr>
<td>5.14A</td>
<td>All-Weld-Metal Tension Test Specimen Design (U.S. Customary Units)</td>
</tr>
<tr>
<td>5.15</td>
<td>Location of Charpy V-Notch Impact Test Specimen in Test Weld</td>
</tr>
<tr>
<td>5.16</td>
<td>Fillet Weld Shear Strength Specimens—Longitudinal from Plate</td>
</tr>
<tr>
<td>5.16A</td>
<td>Fillet Weld Shear Strength Specimens—Longitudinal from Plate (U.S. Customary Units)</td>
</tr>
</tbody>
</table>
5.17 Fillt Weld Shear Strength Specimens—Transverse from Plate ... 42
5.17A Fillt Weld Shear Strength Specimens—Transverse from Plate (U.S. Customary Units) 43
5.18 Transverse Weld Shear Strength Test Coupon for Pipe ... 44
5.18A Transverse Weld Shear Strength Test Coupon for Pipe (U.S. Customary Units) 44
5.19 Bridge Bend Test 45
6.1 Ultrasonic Scanning Techniques ... 53
6.2 Discontinuity Evaluation ... 54
7.1 Location and Type of Test Specimens on Welded Plate Test Procedure Qualification Assembly, Class A Groove Welds ... 58
7.1A Location and Type of Test Specimens on Welded Plate Test Procedure Qualification Assembly, Class A Groove Welds (U.S. Customary Units) ... 59
7.2 Location and Types of Test Specimens on Welded Pipe Test Procedure Qualification Assembly, Class A Groove Welds in Pipe ... 60
7.3 Type and Location of Bend Test Specimens for Welder Qualification, Class A Groove Welds . 63
7.4 Test Assembly for T-, Y-, and K-Connections on Pipe or Square or Rectangular Tubing—Welding Procedure and Welder Performance Qualification, Class A Welds 64
7.4A Test Assembly for T-, Y-, and K-Connections on Pipe or Square or Rectangular Tubing—Welding Procedure and Welder Performance Qualification, Class A Welds (U.S. Customary Units) ... 65
7.5 Acceptable and Unacceptable Weld Profiles for Class A Welds .. 66
7.6 Ultrasonic Inspection Acceptance Criteria ... 67
7.6A Ultrasonic Inspection Acceptance Criteria (U.S. Customary Units) 69
8.1 Location and Types of Test Specimens on Welded Plate Test Procedure Qualification Assembly, Class B Groove Welds ... 73
8.1A Location and Types of Test Specimens on Welded Plate Test Procedure Qualification Assembly, Class B Groove Welds (U.S. Customary Units) ... 74
8.2 Location and Types of Test Specimens on Welded Pipe Test Procedure Qualification Assembly, Class B Groove Welds in Pipe ... 75
8.3 Type and Location of Bend Test Specimens for Welder Qualification, Class B Groove Welds . 77
8.4 Test Assembly for T-, Y-, and K-Connections on Pipe or Square or Rectangular Tubing—Welding Procedure and Welder Performance Qualification, Class B Welds 78
8.4A Test Assembly for T-, Y-, and K-Connections on Pipe or Square or Rectangular Tubing—Welding Procedure and Welder Performance Qualification, Class B Welds (U.S. Customary Units) ... 78
8.5 Acceptable and Unacceptable Weld Profiles for Class B Welds .. 80

List of Forms

<table>
<thead>
<tr>
<th>Form</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A–1</td>
<td>Welding Procedure Specification—Wet Welding and Dry Hyperbaric Welding</td>
<td>86</td>
</tr>
<tr>
<td>A–2</td>
<td>Procedure Qualification Record (PQR)—Wet Welding Variables</td>
<td>90</td>
</tr>
<tr>
<td>A–3</td>
<td>Welder or Welding Operator Performance Qualification Test Record—Wet Welding Process</td>
<td>92</td>
</tr>
<tr>
<td>A–4</td>
<td>Procedure Qualification Record (PQR)—Dry Hyperbaric Welding Variables</td>
<td>93</td>
</tr>
<tr>
<td>A–5</td>
<td>Welder or Welding Operator Performance Qualification Test Record—Dry Welding Processes</td>
<td>95</td>
</tr>
<tr>
<td>A–6</td>
<td>Ultrasonic Examination Report Form</td>
<td>96</td>
</tr>
<tr>
<td>A–6A</td>
<td>Ultrasonic Examination Report Form (U.S. Customary Units)</td>
<td>97</td>
</tr>
</tbody>
</table>
This page is intentionally blank.

1.1 Scope. This Code covers underwater welding in both dry and wet environments. All provisions of this document apply equally to new construction and to modification and repair of existing structures underwater.

1.2 Normative References. The following standards contain provisions which, through reference in this text, constitute mandatory provisions of this AWS standard. For undated references, the latest edition of the referenced standard shall apply. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

AWS Documents:
AWS A2.4, Standard Symbols for Welding, Brazing, and Nondestructive Testing
AWS A3.0, Standard Method for Standard Welding Terms and Definitions
AWS B4.0, Mechanical Testing of Welds
AWS D1.1, Structural Welding Code—Steel

Other Documents:
ANSI Z49. 1, Safety in Welding, Cutting and Allied Processes
API RP2X, Recommended Practice for Ultrasonic and Magnetic Examination of Offshore Structural Fabrication and Guidelines for Qualification of Technicians
ASME BPV Code, Section IX, QW-470, Etching Processes and Reagents
ASNT SNT-TC-1A, Recommended Practice
ASTM A 370, Standard Methods and Definitions for Mechanical Testing of Steel Products
ASTM E 92, Test Method for Vickers Hardness of Metallic Materials
ASTM E 164, Standard Practice for Ultrasonic Contact Examination of Weldments
ASTM E 165, Standard Test Method for Liquid Penetrant Examination
ASTM E 309, Standard Practice for Eddy-Current Examination of Steel Tubular Products using Magnetic Saturation
ASTM E 426, Standard Practice for Electromagnetic (Eddy-Current) Examination of Seamless and Welded Tubular Products Austenitic Stainless Steel and Similar Alloys
ASTM E 709, Guide for Magnetic Particle Examination
ASTM E 1219, Standard Test Method for Fluorescent Liquid Penetrant Examination Using the Solvent-Removable Process
ASTM E 1416, Standard Test Method for Radioscopic Examination of Weldments

1 AWS standards are published by the American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.
2 This ANSI standard is published by the American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.
3 API standards are published by the American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005-4070.
4 ASME Codes are published by the American Society for Mechanical Engineers, Three Park Avenue, New York, NY 10016-5900.
5 ASNT standards are published by the American Society for Nondestructive Testing, PO Box 28518 1711 Arlingate Lane, Columbus, OH 43228-0518.
6 ASTM standards are published by the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.